1
|
Yang Y, Huang L, Xu C, Qi L, Wu Z, Li J, Chen H, Wu Y, Fu T, Zhu H, Saand MA, Li J, Liu L, Fan H, Zhou H, Qin W. Chromosome-scale genome assembly of areca palm (Areca catechu). Mol Ecol Resour 2021; 21:2504-2519. [PMID: 34133844 DOI: 10.1111/1755-0998.13446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Areca palm (Areca catechu L.; family Arecaceae) is an important tropical medicinal crop and is also used for masticatory and religious purposes in Asia. Improvements to areca properties made by traditional breeding tools have been very slow, and further advances in its cultivation and practical use require genomic information, which is still unavailable. Here, we present a chromosome-scale reference genome assembly for areca by combining Illumina and PacBio data with Hi-C mapping technologies, covering the predicted A. catechu genome length (2.59 Gb, variety "Reyan#1") to an estimated 240× read depth. The assembly was 2.51 Gb in length with a scaffold N50 of 1.7Mb. The scaffolds were then further assembled into 16 pseudochromosomes, with an N50 of 172 Mb. Transposable elements comprised 80.37% of the areca genome, and 68.68% of them were long-terminal repeat retrotransposon elements. The areca palm genome was predicted to harbour 31,571 protein-coding genes and overall, 92.92% of genes were functionally annotated, including enriched and expanded families of genes responsible for biosynthesis of flavonoid, anthocyanin, monoterpenoid and their derivatives. Comparative analyses indicated that A. catechu probably diverged from its close relatives Elaeis guineensis and Cocos nucifera approximately 50.3 million years ago (Ma). Two whole genome duplication events in areca palm were found to be shared by palms and monocots, respectively. This genome assembly and associated resources represents an important addition to the palm genomics community and will be a valuable resource that will facilitate areca palm breeding and improve our understanding of areca palm biology and evolution.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Liyun Huang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Chunyan Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lan Qi
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Jia Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Tao Fu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hui Zhu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Mumtaz Ali Saand
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Liyun Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Haikou Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Huanqi Zhou
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Weiquan Qin
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
2
|
Huang Y, Luo L, Hu X, Yu F, Yang Y, Deng Z, Wu J, Chen R, Zhang M. Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus. FRONTIERS IN PLANT SCIENCE 2017; 8:924. [PMID: 28638390 PMCID: PMC5461294 DOI: 10.3389/fpls.2017.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/17/2017] [Indexed: 06/16/2023]
Abstract
Erianthus arundinaceus is an important wild species of the genus Saccharum with many valuable traits. However, the composition and structure of its genome are largely unknown, which have hindered its utilization in sugarcane breeding and evolutionary research. Retrotransposons constitute an appreciable fraction of plant genomes and may have played a significant role in the evolution and sequence organization of genomes. In the current study, we investigate the phylogenetic diversity and genomic abundance of Ty1-copia retrotransposons for the first time and inspect their chromosomal distribution patterns in E. arundinaceus. In total, 70 Ty1-copia reverse transcriptase (RT) sequences with significant levels of heterogeneity were obtained. The phylogenetic analysis revealed these Ty1-copia retrotransposons were classified into four distinct evolutionary lineages (Tork/TAR, Tork/Angela, Retrofit/Ale, and Sire/Maximus). Dot-blot analysis showed estimated the total copy number of Ty1-copia retrotransposons to be about 4.5 × 103 in the E. arundinaceus genome, indicating they were a significant component. Fluorescence in situ hybridization revealed that Ty1-copia retrotransposons from the four lineages had strikingly similar patterns of chromosomal enrichment, being exclusively enriched in the subterminal heterochromatic regions of most E. arundinaceus chromosomes. This is the first clear evidence of the presence of Ty1-copia retrotransposons in the subterminal heterochromatin of E. arundinaceus. Altogether, these results promote the understanding of the diversification of Ty1-copia retrotransposons and shed light on their chromosomal distribution patterns in E. arundinaceus.
Collapse
Affiliation(s)
- Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xuguang Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yongqing Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi UniversityNanning, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and BiorefineryGuangzhou, China
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research InstituteGuangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muqing Zhang
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi UniversityNanning, China
| |
Collapse
|
3
|
Özkan H, Tuna M, Kilian B, Mori N, Ohta S. Genome size variation in diploid and tetraploid wild wheats. AOB PLANTS 2010; 2010:plq015. [PMID: 22476073 PMCID: PMC2992354 DOI: 10.1093/aobpla/plq015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 07/15/2010] [Accepted: 09/22/2010] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Intra- and interspecific variations of C-values and the relationship between habitat factors and genome size were studied in natural populations of diploid and tetraploid wild wheats. METHODOLOGY The 1C nuclear DNA content of 376 individual plants representing 41 populations of diploid and tetraploid wild wheats was determined by flow cytometry (FCM) and correlated with geographical and bioclimate variables. PRINCIPAL RESULTS Based on analysis of variance, significant differences between diploid and tetraploid Triticum species were found. Differences among populations of T. boeoticum and T. dicoccoides were also statistically significant and argue for isolation between populations, except for T. araraticum. However, the variation among individuals of the same population was not statistically significant. Maximum genome size differences among populations for T. boeoticum (0.143 pg; 2.32 %), T. dicoccoides (0.314 pg; 2.49 %) and T. araraticum (0.116 pg; 0.98 %) argue for genome constancy in these species. There was no significant correlation between intra-population variance and geographical and bioclimate variables for T. boeoticum and T. dicoccoides. In contrast to the limited genome size variation at the intraspecific level, the interspecific variation was large: ∼0.5 pg/1C (8 %) at the diploid level (T. boeoticum vs. T. urartu) and ∼1 pg/1C (9.7 %) at the tetraploid level (T. dicoccoides vs. T. araraticum). CONCLUSIONS Low intraspecific genome size variation occurs in diploid and tetraploid wild wheats, and this limited variation is not correlated with geographical and climate variables. However, interspecific variation is significant at the diploid and tetraploid level. It can be concluded that the genome size of wild self-fertilizing Triticum species is generally stable, despite the presence of many potentially active retroelements. In natural habitats, it is very difficult to distinguish wild wheats from each other. However, all four species can be distinguished easily, quickly and unambiguously by using the FCM technique.
Collapse
Affiliation(s)
- Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Cukurova, 01330Adana, Turkey
| | - Metin Tuna
- Department of Field Crops, Faculty of Agriculture, Namık Kemal University, 59030Tekirdag, Turkey
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Genebank/ Genome Diversity, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Naoki Mori
- Graduate School of Agricultural Science, Kobe University, 1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shoji Ohta
- Department of Bioscience, Fukui Prefectural University, 4-1-1, Kenjojima, Matsuoka, Yoshida, Fukui 910-1185, Japan
| |
Collapse
|