1
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
2
|
Mahajan A, Goh V, Basu S, Vaish R, Weeks AJ, Thakur MH, Cook GJ. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol 2015; 70:1060-82. [PMID: 26187890 DOI: 10.1016/j.crad.2015.06.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
Abstract
Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.
Collapse
Affiliation(s)
- A Mahajan
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India.
| | - V Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - S Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, 400 012, India
| | - R Vaish
- Department of Head and Neck Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
| | - A J Weeks
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - M H Thakur
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India
| | - G J Cook
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Nuclear Medicine, Guy's and St Thomas NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
3
|
Abstract
Oncolytic viruses represent a new class of therapeutic agents that promote anti-tumour responses through a dual mechanism of action that is dependent on selective tumour cell killing and the induction of systemic anti-tumour immunity. The molecular and cellular mechanisms of action are not fully elucidated but are likely to depend on viral replication within transformed cells, induction of primary cell death, interaction with tumour cell antiviral elements and initiation of innate and adaptive anti-tumour immunity. A variety of native and genetically modified viruses have been developed as oncolytic agents, and the approval of the first oncolytic virus by the US Food and Drug Administration (FDA) is anticipated in the near future. This Review provides a comprehensive overview of the basic biology supporting oncolytic viruses as cancer therapeutic agents, describes oncolytic viruses in advanced clinical trials and discusses the unique challenges in the development of oncolytic viruses as a new class of drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Howard L. Kaufman
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| | - Frederick J. Kohlhapp
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| |
Collapse
|
4
|
Schönitzer V, Haasters F, Käsbauer S, Ulrich V, Mille E, Gildehaus FJ, Carlsen J, Pape M, Beck R, Delker A, Böning G, Mutschler W, Böcker W, Schieker M, Bartenstein P. In vivo mesenchymal stem cell tracking with PET using the dopamine type 2 receptor and 18F-fallypride. J Nucl Med 2014; 55:1342-7. [PMID: 25024426 DOI: 10.2967/jnumed.113.134775] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Human mesenchymal stem cells (hMSCs) represent a promising treatment approach for tissue repair and regeneration. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work was to determine the feasibility of PET imaging and in vivo monitoring after transplantation of dopamine type 2 receptor-expressing cells. METHODS An hMSC line constitutively expressing a mutant of the dopamine type 2 receptor (D2R80A) was generated by lentiviral gene transfer. D2R80A messenger RNA expression was confirmed by reverse transcriptase-polymerase chain reaction. Localization of the transmembrane protein was analyzed by confocal fluorescence microscopy. The stem cell character of transduced hMSCs was investigated by adipogenic and osteogenic differentiation. Migration capacity was assessed by scratch assays in time-lapse imaging. In vitro specific binding of ligands was tested by fluorescence-activated cell sorting analysis and by radioligand assay using (18)F-fallypride. Imaging of D2R80A overexpressing hMSC transplanted into athymic rats was performed by PET using (18)F-fallypride. RESULTS hMSCs showed long-term overexpression of D2R80A. As expected, the fluorescence signal suggested the primary localization of the protein in the membrane of the transduced cells. hMSC and D2R80A retained their stem cell character demonstrated by their osteogenic and adipogenic differentiation capacity and their proliferation and migration behavior. For in vitro hMSCs, at least 90% expressed the D2R80A transgene and hMSC-D2R80A showed specific binding of (18)F-fallypride. In vivo, a specific signal was detected at the transplantation site up to 7 d by PET. CONCLUSION The mutant of the dopamine type 2 receptor (D2R80A) is a potent reporter to detect hMSCs by PET in vivo.
Collapse
Affiliation(s)
- Veronika Schönitzer
- Department of Surgery, Experimental Surgery, and Regenerative Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; and
| | - Florian Haasters
- Department of Surgery, Experimental Surgery, and Regenerative Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; and
| | - Stefanie Käsbauer
- Department of Surgery, Experimental Surgery, and Regenerative Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; and
| | - Veronika Ulrich
- Department of Surgery, Experimental Surgery, and Regenerative Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; and
| | - Erik Mille
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Janette Carlsen
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Manuela Pape
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roswitha Beck
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Delker
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolf Mutschler
- Department of Surgery, Experimental Surgery, and Regenerative Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; and
| | - Wolfgang Böcker
- Department of Surgery, Experimental Surgery, and Regenerative Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; and
| | - Matthias Schieker
- Department of Surgery, Experimental Surgery, and Regenerative Medicine, Ludwig-Maximilians-University Munich, Munich, Germany; and
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
5
|
Quantitative, noninvasive, in vivo longitudinal monitoring of gene expression in the brain by co-AAV transduction with a PET reporter gene. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14016. [PMID: 26015960 PMCID: PMC4362377 DOI: 10.1038/mtm.2014.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/09/2014] [Indexed: 01/06/2023]
Abstract
In vivo imaging of vector transgene expression would be particularly valuable for repetitive monitoring of therapy in the brain, where invasive tissue sampling is contraindicated. We evaluated adeno-associated virus vector expression of a dopamine-2 receptor (D2R) mutant (D2R80A) by positron emission tomography in the brains of mice and cats. D2R80A is inactivated for intracellular signaling and binds subphysiologic amounts of the radioactive [18F]-fallypride analog of dopamine. The [18F]-fallypride signal bound to D2R80A in the injection site was normalized to the signal from endogenous D2R in the striatum and showed stable levels of expression within individual animals. A separate adeno-associated virus type 1 vector with identical gene expression control elements, expressing green fluorescent protein or a therapeutic gene, was coinjected with the D2R80A vector at equal doses into specific sites. Both transgenes had similar levels of gene expression by immunohistochemistry, in situ hybridization, and quantitative PCR assays, demonstrating that D2R80A is a faithful surrogate measure for expression of a gene of interest. This dual vector approach allows the D2R80A gene to be used with any therapeutic gene and to be injected into a single site for monitoring while the therapeutic gene can be distributed more widely as needed in each disease.
Collapse
|
6
|
Pei Z, Lan X, Cheng Z, Qin C, Wang P, He Y, Yen TC, Tian Y, Mghanga FP, Zhang Y. A multimodality reporter gene for monitoring transplanted stem cells. Nucl Med Biol 2012; 39:813-20. [PMID: 22336371 DOI: 10.1016/j.nucmedbio.2011.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/26/2011] [Accepted: 12/28/2011] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The aim of this study is to explore the feasibility of a triple-fused reporter gene, termed TGF [herpes simplex virus type 1 thymidine kinase (HSV1-tk), enhanced green fluorescent protein (eGFP) and firefly luciferase (Fluc)], to monitor stem cells using multimodality molecular imaging. METHODS A recombinant adenovirus vector carrying the triple-fused reporter gene (Ad5-TGF) was constructed. Bone marrow mesenchymal stem cells (BMSCs) were transfected with different virus titers of Ad5-TGF [multiplicities of infection (MOIs) were 0, 50, 100, 150, 200 and 250]. The mRNA and protein expressions of HSV1-tk, eGFP and Fluc in the transfected BMSCs were evaluated using polymerase chain reaction and Western blot. After the transfection of the BMSCs with different virus titers of Ad5-TGF (MOIs were 25, 50, 75, 100 and 125), their uptake rates of (131)I-FIAU were measured. Whole-body fluorescence, bioluminescence and micro-positron emission tomography (PET) images were acquired 1 day after the transfected BMSCs were injected into the left forelimb of rats. RESULTS After the transfection with different titers of Ad5-TGF, the positive transfection rate reached a peak (70%) when the MOI was 100. HSV1-tk, eGFP and Fluc mRNA and protein were detected in the Ad5-TGF-transfected BMSCs, which implies their successful transfection and expression. The BMSCs uptake of (131)I-FIAU increased with the adenovirus titer and incubation time and reached a plateau (approximately 5.3%) after 3 h. Strong signals were observed in the injected left forearms in the fluorescence, bioluminescence and micro-PET images. CONCLUSIONS A triple-fused reporter gene, TGF, can be used as a multifunctional molecular probe for multimodality imaging.
Collapse
Affiliation(s)
- Zhijun Pei
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging. Mol Imaging Biol 2011; 13:633-45. [PMID: 20730500 DOI: 10.1007/s11307-010-0392-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Transplantation of a regenerative cell population derived from human subcutaneous adipose tissue (hASCs) for cardiac regeneration represents a promising therapy due to the capacity of these cells for proliferation and differentiation. Understanding the fate of injected hASCs would help to understand how hASCs work in vivo. The aim of this study was to track the long-term fate, including survival, differentiation, proliferation, apoptosis, migration, and growth factor secretion of intramyocardially injected hASCs following experimental acute myocardial infarction in an immunodeficient mouse model. METHODS Myocardial infarction was experimentally induced in severe combined immunodeficient mice by permanent ligation of the left anterior descending coronary artery. Lentivirally labeled hASCs (5 × 10(5); expressing green fluorescence protein [GFP] and luciferase) were injected into the peri-infarct region. Colony formation, growth kinetics, and differentiation of transduced hASCs were analyzed in vitro and compared to those of untransduced hASCs. The survival and migration of injected hASCs were tracked by luciferase-based bioluminescence imaging for 10 weeks. Immunofluorescence and terminal deoxynucleotidyl transferase dUTP nick end labeling staining were used to assess differentiation, proliferation, growth factor expression, or apoptosis of grafted hASCs in infarcted hearts and potential distribution to other tissues. RESULTS Lentivirus transduction and GFP and luciferase expression did not influence proliferation or differentiation of hASCs. Bioluminescence imaging demonstrated that injected hASCs survived in infarcted hearts during the follow-up of 10 weeks. Immunofluorescence confirmed that hASCs engrafted in ischemic hearts expressed bFGF and IGF-1, and did not migrate into other organs. Of all engrafted hASCs, 3.5% differentiated into cardiomyocytes or endothelial cells. Other cells maintained their proliferative potential or underwent apoptosis. CONCLUSION Luciferase-based bioluminescence imaging allows long-term tracking of intramyocardially injected hASCs in living mice. The hASCs might enhance function of injured hearts through long-term engraftment, growth factor secretion, and transdifferentiation to cardiomyocytes and endothelial cells.
Collapse
|
8
|
Abstract
Cell-based therapies, such as adoptive immunotherapy and stem-cell therapy, have received considerable attention as novel therapeutics in oncological research and clinical practice. The development of effective therapeutic strategies using tumor-targeted cells requires the ability to determine in vivo the location, distribution, and long-term viability of the therapeutic cell populations as well as their biological fate with respect to cell activation and differentiation. In conjunction with various noninvasive imaging modalities, cell-labeling methods, such as exogenous labeling or transfection with a reporter gene, allow visualization of labeled cells in vivo in real time, as well as monitoring and quantifying cell accumulation and function. Such cell-tracking methods also have an important role in basic cancer research, where they serve to elucidate novel biological mechanisms. In this Review, we describe the basic principles of cell-tracking methods, explain various approaches to cell tracking, and highlight recent examples for the application of such methods in animals and humans.
Collapse
|
9
|
Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas. Neoplasia 2011; 13:276-85. [PMID: 21390190 DOI: 10.1593/neo.101540] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/21/2010] [Accepted: 12/30/2010] [Indexed: 01/27/2023] Open
Abstract
Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.
Collapse
|
10
|
Taghva A, Kim PE, Liu CY, Apuzzo MLJ. Molecular imaging, part 1: apertures into the landscape of genomic medicine. World Neurosurg 2010; 73:307-16. [PMID: 20849785 DOI: 10.1016/j.wneu.2010.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Indexed: 01/16/2023]
Abstract
Conventional imaging paradigms rely on the detection of anatomical changes in disease that are preceded by molecular genetic changes that go otherwise undetected. With the advent of molecular imaging, it will be possible to detect these changes prior to the manifestation of disease. Molecular imaging is the amalgamation of molecular biology and imaging technology that was spawned by parallel advances in the two fields. Fundamental to this technique is the ability to directly image biological processes that precede the anatomical changes detected by conventional imaging techniques. The two main strategies for imaging of biologic processes are direct and indirect imaging techniques. Direct techniques use molecules that have specific affinities for targets of interest that can be radiolabeled or otherwise detected on imaging. Indirect imaging uses reporter genes that are coexpressed with therapeutic proteins or other proteins of interest to image vector-transfected cells. Optical imaging and nanotechnology paradigms will also prove to be important additions to the imaging armamentarium. The first installment of this two-part series on molecular imaging seeks to demonstrate basic principles and illustrative examples for the uninitiated neophyte to this field.
Collapse
Affiliation(s)
- Alexander Taghva
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
11
|
Progress and prospects: biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors. Gene Ther 2009; 16:709-15. [PMID: 19369969 DOI: 10.1038/gt.2009.42] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last two years have seen significant advances in our understanding of the cellular innate responses elicited or activated by the entry of amplicon particles, which may, in part, explain the transient nature of transgene expression often observed in cells infected with helper-free amplicon stocks. At the technological level, the most consistent progress has been in strategies to enhance the stability of transgene cassettes, either through integration into host chromosomes or through the conversion of the amplicon genome into a replication-competent extrachromosomal element.
Collapse
|
12
|
Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH. Methods to monitor gene therapy with molecular imaging. Methods 2009; 48:146-60. [PMID: 19318125 DOI: 10.1016/j.ymeth.2009.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.
Collapse
Affiliation(s)
- Yannic Waerzeggers
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research and Faculty of Medicine, University of Cologne, Gleuelerstrasse 50, Cologne 50931, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Navigating beyond the 6th dimension: a challenge in the era of multi-parametric molecular imaging. Eur J Nucl Med Mol Imaging 2009; 36:1025-8. [DOI: 10.1007/s00259-009-1095-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|