1
|
Tu Z, Tang L, Abo-Raya MH, Sun M, Shen H, Wang Y. Cloning and characterization of heat shock transcription factor 1 and its functional role for Hsp70 production in the sea slug Onchidium reevesii. Gene 2024; 893:147945. [PMID: 38381511 DOI: 10.1016/j.gene.2023.147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 02/22/2024]
Abstract
To investigate the regulatory role of heat shock transcription factor 1 of sea slug Onchidium reevesii (OrHSF1) on Hsp70 expression in the sea slug under stress , the OrHSF1 gene was cloned and bioinformatics analysis was performed, then the gene and protein expressions by RNA interference (RNAi) mediated knockdown of OrHSF1 expression were measured to clarify the regulatory relationship between OrHSF1 and Hsp70 under low-frequency noise (LFN) stress. Our study was the first to clone a 1572 bp sequence of the OrHSF1 gene, with the sequence coding for amino acids (CDS) being 729 bp, encoding 243 amino acids. O. reevesii shared a close evolutionary relationship with mollusks such as the Aplysia californica. OrHSF1 gene is widely expressed in different tissues of sea slugs, with the highest expression in the intestine and the lowest in the reproductive glands. Furthermore, we used RNA interference (RNAi) as a tool to silence the OrHSF1 gene in the central nervous system (CNS) and the results indicated that gene silencing was occurring systematically in the CNS and the suppression of OrHSF1 expression by RNAi-mediated gene silencing altered the expression of Hsp70; besides, the expression trends of OrHSF1 gene and Hsp70 were consistent in the 3 and 5-day RNAi experiment. Moreover, in sea slugs injected with siHSF1 and exposed to LFN, the mRNA expression and protein expression of Hsp70 in the CNS were significantly decreased compared to the low-frequency noise group (P < 0.05). This study demonstrated that OrHSF1 regulates Hsp70 expression in marine mollusks under low-frequency noise, and HSF1-Hsp70 axis plays a key role in stress response.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mohamed H Abo-Raya
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mengying Sun
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Zhang X, Li Y, Sun Y, Guo M, Feng J, Wang Y, Zhang Z. Regulatory effect of heat shock transcription factor-1 gene on heat shock proteins and its transcriptional regulation analysis in small abalone Haliotis diversicolor. BMC Mol Cell Biol 2020; 21:83. [PMID: 33228519 PMCID: PMC7685655 DOI: 10.1186/s12860-020-00323-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background The effects of diverse stresses ultimately alter the structures and functions of proteins. As molecular chaperones, heat shock proteins (HSPs) are a group of highly conserved proteins that help in the refolding of misfolded proteins and the elimination of irreversibly damaged proteins. They are mediated by a family of transcription factors called heat shock factors (HSFs). The small abalone Haliotis diversicolor is a species naturally distributed along the southern coast of China. In this study, the expression of HdHSF1 was inhibited by RNAi in hemocytes in order to further elucidate the regulatory roles of HdHSF1 on heat shock responsive genes in abalone. Meanwhile, to understand the transcriptional regulation of the HdHSF1 gene, the 5′-upstream regulatory region of HdHSF1 was characterized, and the relative promoter activity was examined by dual-luciferase reporter gene assay system in HEK293T cell lines. Results After the inhibition of the H. diversicolor HSF1 gene (HdHSF1) by dsRNA (double-stranded RNA), the expression of most heat shock related-genes was down-regulated (p < 0.05). It indicated the importance of HdHSF1 in the heat shock response of H. diversicolor. Meanwhile, 5′-flanking region sequence (2633 bp) of the HdHSF1 gene was cloned; it contained a putative core promoter region, TATA box, CAAT box, CpG island, and many transcription elements. In HEK293T cells, the 5′-flanking region sequence can drive expression of the enhanced green fluorescent protein (EGFP), proving its promoter function. Exposure of cells to the high-temperature (39 °C and 42 °C) resulted in the activation of HdHSF1 promoter activity, which may explain why the expression of the HdHSF1 gene participates in heat shock response. Luciferase activity of different recombinant plasmids, which contained different truncated promoter fragments of the HdHSF1 gene in HEK293T cells, revealed the possible active regions of the promoter. To further identify the binding site of the critical transcription factor in the region, an expression vector with the site-directed mutation was constructed. After being mutated on the GATA-1 binding site, we found that the luciferase activity was significantly increased, which suggested that the GATA-1 binding site has a certain weakening effect on the activity of the HdHSF1 promoter. Conclusions These findings suggest that GATA-1 may be one of the transcription factors of HdHSF1, and a possible signaling pathway mediated by HdHSF1 may exist in H. diversicolor to counteract the adverse effects of heat shock stress. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12860-020-00323-9.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yuting Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yulong Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingxing Guo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianjun Feng
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China. .,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2020; 60:1665-1681. [PMID: 31792128 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Cheeseman M, Chessum NEA, Rye CS, Pasqua AE, Tucker M, Wilding B, Evans LE, Lepri S, Richards M, Sharp SY, Ali S, Rowlands M, O’Fee L, Miah A, Hayes A, Henley AT, Powers M, te Poele R, De Billy E, Pellegrino L, Raynaud F, Burke R, van Montfort RLM, Eccles SA, Workman P, Jones K. Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. J Med Chem 2017; 60:180-201. [PMID: 28004573 PMCID: PMC6014687 DOI: 10.1021/acs.jmedchem.6b01055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/20/2022]
Abstract
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.
Collapse
Affiliation(s)
- Matthew
D. Cheeseman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - A. Elisa Pasqua
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael
J. Tucker
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Susan Lepri
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Meirion Richards
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Swee Y. Sharp
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Salyha Ali
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Martin Rowlands
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lisa O’Fee
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Asadh Miah
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Marissa Powers
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Robert te Poele
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Emmanuel De Billy
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Loredana Pellegrino
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Florence Raynaud
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A. Eccles
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
5
|
Insight into the Molecular Imaging of Alzheimer's Disease. Int J Biomed Imaging 2016; 2016:7462014. [PMID: 26880871 PMCID: PMC4736963 DOI: 10.1155/2016/7462014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is a complex neurodegenerative disease affecting millions of individuals worldwide. Earlier it was diagnosed only via clinical assessments and confirmed by postmortem brain histopathology. The development of validated biomarkers for Alzheimer's disease has given impetus to improve diagnostics and accelerate the development of new therapies. Functional imaging like positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), and proton magnetic resonance spectroscopy provides a means of detecting and characterising the regional changes in brain blood flow, metabolism, and receptor binding sites that are associated with Alzheimer's disease. Multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical variations that are associated with neurodegenerative diseases. Radiotracer-based PET and SPECT potentially provide sensitive, accurate methods for the early detection of disease. This paper presents a review of neuroimaging modalities like PET, SPECT, and selected imaging biomarkers/tracers used for the early diagnosis of AD. Neuroimaging with such biomarkers and tracers could achieve a much higher diagnostic accuracy for AD and related disorders in the future.
Collapse
|
6
|
Peng B, Zhang X, Cao F, Wang Y, Xu L, Cao L, Yang C, Li M, Uzan G, Zhang D. Peptide deformylase inhibitor actinonin reduces celastrol's HSP70 induction while synergizing proliferation inhibition in tumor cells. BMC Cancer 2014; 14:146. [PMID: 24589236 PMCID: PMC3975845 DOI: 10.1186/1471-2407-14-146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/24/2014] [Indexed: 01/17/2023] Open
Abstract
Background Celastrol is a promising anti-tumor agent, yet it also elevates heat shock proteins (HSPs), especially HSP70, this effect believed to reduce its anti-tumor effects. Concurrent use of siRNA to increase celastrol’s anti-tumor effects through HSP70 interference has been reported, but because siRNA technology is difficult to clinically apply, an alternative way to curb unwanted HSP70 elevation caused by celastrol treatment is worth exploring. Methods In this work, we explore three alternative strategies to control HSP70 elevation: (1) Searching for cancer cell types that show no HSP70 elevation in the presence of celastrol (thus recommending themselves as suitable targets); (2) Modifying HSP70-inducing chemical groups, i.e.: the carboxyl group in celastrol; and (3) Using signaling molecule inhibitors to specifically block HSP70 elevation while protecting and/or enhancing anti-tumor effects. Results The first strategy was unsuccessful since celastrol treatment increased HSP70 in all 7 of the cancer cell types tested, this result related to HSF1 activation. The ubiquity of HSF1 expression in different cancer cells might explain why celastrol has no cell-type limitation for HSP70 induction. The second strategy revealed that modification of celastrol’s carboxyl group abolished its ability to elevate HSP70, but also abolished celastrol’s tumor inhibition effects. In the third strategy, 11 inhibitors for 10 signaling proteins reportedly related to celastrol action were tested, and five of these could reduce celastrol-caused HSP70 elevation. Among these, the peptide deformylase (PDF) inhibitor, actinonin, could synergize celastrol’s proliferation inhibition. Conclusions Concurrent use of the chemical agent actinonin could reduce celastrol’s HSP70 elevation and also enhance proliferation inhibition by celastrol. This combination presents a novel alternative to siRNA technology and is worth further investigation for its potentially effective anti-tumor action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Denghai Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, 207 Ju Ye Road, Pudong New District, Shanghai 200135, China.
| |
Collapse
|
7
|
de la Rosa X, Santalucía T, Fortin PY, Purroy J, Calvo M, Salas-Perdomo A, Justicia C, Couillaud F, Planas AM. In vivo imaging of induction of heat-shock protein-70 gene expression with fluorescence reflectance imaging and intravital confocal microscopy following brain ischaemia in reporter mice. Eur J Nucl Med Mol Imaging 2013; 40:426-38. [PMID: 23135322 DOI: 10.1007/s00259-012-2277-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/04/2012] [Indexed: 01/07/2023]
Abstract
PURPOSE Stroke induces strong expression of the 72-kDa heat-shock protein (HSP-70) in the ischaemic brain, and neuronal expression of HSP-70 is associated with the ischaemic penumbra. The aim of this study was to image induction of Hsp-70 gene expression in vivo after brain ischaemia using reporter mice. METHODS A genomic DNA sequence of the Hspa1b promoter was used to generate an Hsp70-mPlum far-red fluorescence reporter vector. The construct was tested in cellular systems (NIH3T3 mouse fibroblast cell line) by transient transfection and examining mPlum and Hsp-70 induction under a challenge. After construct validation, mPlum transgenic mice were generated. Focal brain ischaemia was induced by transient intraluminal occlusion of the middle cerebral artery and the mice were imaged in vivo with fluorescence reflectance imaging (FRI) with an intact skull, and with confocal microscopy after opening a cranial window. RESULTS Cells transfected with the Hsp70-mPlum construct showed mPlum fluorescence after stimulation. One day after induction of ischaemia, reporter mice showed a FRI signal located in the HSP-70-positive zone within the ipsilateral hemisphere, as validated by immunohistochemistry. Live confocal microscopy allowed brain tissue to be visualized at the cellular level. mPlum fluorescence was observed in vivo in the ipsilateral cortex 1 day after induction of ischaemia in neurons, where it is compatible with penumbra and neuronal viability, and in blood vessels in the core of the infarction. CONCLUSION This study showed in vivo induction of Hsp-70 gene expression in ischaemic brain using reporter mice. The fluorescence signal showed in vivo the induction of Hsp-70 in penumbra neurons and in the vasculature within the ischaemic core.
Collapse
Affiliation(s)
- Xavier de la Rosa
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 161, planta 6, 08036, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Brader P, Serganova I, Blasberg RG. Noninvasive Molecular Imaging Using Reporter Genes. J Nucl Med 2013; 54:167-72. [DOI: 10.2967/jnumed.111.099788] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Benadiba M, Luurtsema G, Wichert-Ana L, Buchpigel CA, Filho GB. New Molecular Targets for PET and SPECT Imaging in Neurodegenerative Diseases. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34 Suppl 2:S125-36. [DOI: 10.1016/j.rbp.2012.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/29/2012] [Indexed: 01/23/2023]
|