1
|
Kanchanapiboon P, Tunksook P, Tunksook P, Ritthipravat P, Boonpratham S, Satravaha Y, Chaweewannakorn C, Peanchitlertkajorn S. Classification of cervical vertebral maturation stages with machine learning models: leveraging datasets with high inter- and intra-observer agreement. Prog Orthod 2024; 25:35. [PMID: 39279025 PMCID: PMC11402886 DOI: 10.1186/s40510-024-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVES This study aimed to assess the accuracy of machine learning (ML) models with feature selection technique in classifying cervical vertebral maturation stages (CVMS). Consensus-based datasets were used for models training and evaluation for their model generalization capabilities on unseen datasets. METHODS Three clinicians independently rated CVMS on 1380 lateral cephalograms, resulting in the creation of five datasets: two consensus-based datasets (Complete Agreement and Majority Voting), and three datasets based on a single rater's evaluations. Additionally, landmarks annotation of the second to fourth cervical vertebrae and patients' information underwent a feature selection process. These datasets were used to train various ML models and identify the top-performing model for each dataset. These models were subsequently tested on their generalization capabilities. RESULTS Features that considered significant in the consensus-based datasets were consistent with a CVMS guideline. The Support Vector Machine model on the Complete Agreement dataset achieved the highest accuracy (77.4%), followed by the Multi-Layer Perceptron model on the Majority Voting dataset (69.6%). Models from individual ratings showed lower accuracies (60.4-67.9%). The consensus-based training models also exhibited lower coefficient of variation (CV), indicating superior generalization capability compared to models from single raters. CONCLUSION ML models trained on consensus-based datasets for CVMS classification exhibited the highest accuracy, with significant features consistent with the original CVMS guidelines. These models also showed robust generalization capabilities, underscoring the importance of dataset quality.
Collapse
Affiliation(s)
- Potjanee Kanchanapiboon
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Rd, Siriraj, Bangkok Noi, Bangkok, 10700, Thailand
| | - Pitipat Tunksook
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | | | - Panrasee Ritthipravat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, 999 Phutthamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Supatchai Boonpratham
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Yodhathai Satravaha
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Chaiyapol Chaweewannakorn
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Supakit Peanchitlertkajorn
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, 6 Yothi Rd, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Kazimierczak W, Jedliński M, Issa J, Kazimierczak N, Janiszewska-Olszowska J, Dyszkiewicz-Konwińska M, Różyło-Kalinowska I, Serafin Z, Orhan K. Accuracy of Artificial Intelligence for Cervical Vertebral Maturation Assessment-A Systematic Review. J Clin Med 2024; 13:4047. [PMID: 39064087 PMCID: PMC11277636 DOI: 10.3390/jcm13144047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: To systematically review and summarize the existing scientific evidence on the diagnostic performance of artificial intelligence (AI) in assessing cervical vertebral maturation (CVM). This review aimed to evaluate the accuracy and reliability of AI algorithms in comparison to those of experienced clinicians. Methods: Comprehensive searches were conducted across multiple databases, including PubMed, Scopus, Web of Science, and Embase, using a combination of Boolean operators and MeSH terms. The inclusion criteria were cross-sectional studies with neural network research, reporting diagnostic accuracy, and involving human subjects. Data extraction and quality assessment were performed independently by two reviewers, with a third reviewer resolving any disagreements. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 tool was used for bias assessment. Results: Eighteen studies met the inclusion criteria, predominantly employing supervised learning techniques, especially convolutional neural networks (CNNs). The diagnostic accuracy of AI models for CVM assessment varied widely, ranging from 57% to 95%. The factors influencing accuracy included the type of AI model, training data, and study methods. Geographic concentration and variability in the experience of radiograph readers also impacted the results. Conclusions: AI has considerable potential for enhancing the accuracy and reliability of CVM assessments in orthodontics. However, the variability in AI performance and the limited number of high-quality studies suggest the need for further research.
Collapse
Affiliation(s)
- Wojciech Kazimierczak
- Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | - Maciej Jedliński
- Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Julien Issa
- Chair of Practical Clinical Dentistry, Department of Diagnostics, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Natalia Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | | | - Marta Dyszkiewicz-Konwińska
- Chair of Practical Clinical Dentistry, Department of Diagnostics, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Ingrid Różyło-Kalinowska
- Department of Dental and Maxillofacial Radiodiagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara 06500, Turkey
- Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara 06500, Turkey
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
3
|
Bajjad AA, Gupta S, Agarwal S, Pawar RA, Kothawade MU, Singh G. Use of artificial intelligence in determination of bone age of the healthy individuals: A scoping review. J World Fed Orthod 2024; 13:95-102. [PMID: 37968159 DOI: 10.1016/j.ejwf.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Bone age assessment, as an indicator of biological age, is widely used in orthodontics and pediatric endocrinology. Owing to significant subject variations in the manual method of assessment, artificial intelligence (AI), machine learning (ML), and deep learning (DL) play a significant role in this aspect. A scoping review was conducted to search the existing literature on the role of AI, ML, and DL in skeletal age or bone age assessment in healthy individuals. METHODS A literature search was conducted in PubMed, Scopus, and Web of Science from January 2012 to December 2022 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Extension for Scoping Reviews (PRISMA-ScR) and Joanna Briggs Institute guidelines. Grey literature was searched using Google Scholar and OpenGrey. Hand-searching of the articles in all the reputed orthodontic journals and the references of the included articles were also searched for relevant articles for the present scoping review. RESULTS Nineteen articles that fulfilled the inclusion criteria were included. Ten studies used skeletal maturity indicators based on hand and wrist radiographs, two studies used magnetic resonance imaging and seven studies used cervical vertebrae maturity indicators based on lateral cephalograms to assess the skeletal age of the individuals. Most of these studies were published in non-orthodontic medical journals. BoneXpert automated software was the most commonly used software, followed by DL models, and ML models in the studies for assessment of bone age. The automated method was found to be as reliable as the manual method for assessment. CONCLUSIONS This scoping review validated the use of AI, ML, or DL in bone age assessment of individuals. A more uniform distribution of sufficient samples in different stages of maturation, use of three-dimensional inputs such as magnetic resonance imaging, and cone beam computed tomography is required for better training of the models to generalize the outputs for use in the target population.
Collapse
Affiliation(s)
- Adeel Ahmed Bajjad
- Department of Orthodontics, Kothiwal Dental College and Research Centre, Moradabad, India
| | - Seema Gupta
- Department of Orthodontics, Kothiwal Dental College and Research Centre, Moradabad, India.
| | - Soumitra Agarwal
- Department of Orthodontics, Kothiwal Dental College and Research Centre, Moradabad, India
| | - Rakesh A Pawar
- Department of Orthodontics, JMF ACPM Dental College, Dhule, India
| | | | - Gul Singh
- Department of Orthodontics, Kothiwal Dental College and Research Centre, Moradabad, India
| |
Collapse
|
4
|
Cao L, He H, Hua F. CURRENT NEURAL NETWORKS DEMONSTRATE POTENTIAL IN AUTOMATED CERVICAL VERTEBRAL MATURATION STAGE CLASSIFICATION BASED ON LATERAL CEPHALOGRAMS. J Evid Based Dent Pract 2024; 24:101928. [PMID: 38448121 DOI: 10.1016/j.jebdp.2023.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION Neural networks for classification of cervical vertebrae maturation: a systematic review. Mathew R, Palatinus S, Padala S, Alshehri A, Awadh W, Bhandi S, Thomas J, Patil S. Angle Orthod. 2022 Nov 1;92(6):796-804. SOURCE OF FUNDING No financial support was reported. TYPE OF STUDY/DESIGN Systematic review.
Collapse
|
5
|
Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P, Nożewski J, Janiszewska-Olszowska J. AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning-A Comprehensive Review. J Clin Med 2024; 13:344. [PMID: 38256478 PMCID: PMC10816993 DOI: 10.3390/jcm13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The advent of artificial intelligence (AI) in medicine has transformed various medical specialties, including orthodontics. AI has shown promising results in enhancing the accuracy of diagnoses, treatment planning, and predicting treatment outcomes. Its usage in orthodontic practices worldwide has increased with the availability of various AI applications and tools. This review explores the principles of AI, its applications in orthodontics, and its implementation in clinical practice. A comprehensive literature review was conducted, focusing on AI applications in dental diagnostics, cephalometric evaluation, skeletal age determination, temporomandibular joint (TMJ) evaluation, decision making, and patient telemonitoring. Due to study heterogeneity, no meta-analysis was possible. AI has demonstrated high efficacy in all these areas, but variations in performance and the need for manual supervision suggest caution in clinical settings. The complexity and unpredictability of AI algorithms call for cautious implementation and regular manual validation. Continuous AI learning, proper governance, and addressing privacy and ethical concerns are crucial for successful integration into orthodontic practice.
Collapse
Affiliation(s)
- Natalia Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | - Wojciech Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
- Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
| | - Paweł Nowicki
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | - Jakub Nożewski
- Department of Emeregncy Medicine, University Hospital No 2 in Bydgoszcz, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | | |
Collapse
|