1
|
Wang W, Kim S, Vu THN, Quach NT, Oh E, Park KH, Park C, Cho Y, Jang H, Roh E, Lee J, Kang E, Han S, Phi QT, Kang H. Bioactive Piperazic Acid-Bearing Cyclodepsipeptides, Lydiamycins E-H, from an Endophytic Streptomyces sp. Associated with Cinnamomum cassia. JOURNAL OF NATURAL PRODUCTS 2023; 86:751-758. [PMID: 36812487 DOI: 10.1021/acs.jnatprod.2c00902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A chemical investigation of the endophytic Streptomyces sp. HBQ95, associated with the medicinal plant Cinnamomum cassia Presl, enabled the discovery of four new piperazic acid-bearing cyclodepsipeptides, lydiamycins E-H (1-4), and one known compound (lydiamycin A). Their chemical structures, including absolute configurations, were defined by a combination of spectroscopic analyses and multiple chemical manipulations. Lydiamycins F-H (2-4) and A (5) exhibited antimetastatic activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.
Collapse
Affiliation(s)
- Weihong Wang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul 08826, Korea
| | - Seungjin Kim
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul 08826, Korea
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Eunseok Oh
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Kyu-Hyung Park
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Chanyoon Park
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul 08826, Korea
| | - Youbin Cho
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Hyeseon Jang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Eun Roh
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul 08826, Korea
| | - JunI Lee
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Eunmo Kang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - SongJoo Han
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Heonjoong Kang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 08826, Korea
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul 08826, Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul 08826, Korea
| |
Collapse
|
2
|
Quach NT, Vu THN, Bui TL, Le TTX, Nguyen TTA, Ngo CC, Phi QT. Genomic and physiological traits provide insights into ecological niche adaptations of mangrove endophytic Streptomyces parvulus VCCM 22513. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Purpose
Endophytic Streptomyces parvulus VCCM 22513 isolated from Bruguiera gymnorrhiza in Quang Ninh mangrove forest, northern Vietnam showed abiotic stress tolerance consisting of antioxidant, salt-tolerant, and aromatic-compound degrading activities. The goal of this study was to shed light on genomic bases rendering mangrove endophytic S. parvulus more resilient to environmental stressors.
Methods
Phenotypic analysis including antioxidant activities, hydrogen peroxide and sodium chloride resistance, and aromatic compound utilization were evaluated. The genome of strain VCCM 22513 was sequenced using Illumina Miseq sequencing platform and assembled using SPAdes.
Results
Out of 15 endophytic actinomycetes associated with B. gymnorrhiza in Quang Ninh mangrove, northern Vietnam, VCCM 22513 extract showed remarkable antioxidant activities through (1,1-diphenyl-2-picrylhydrazyl) DPPH and superoxide radical scavenging assays of 72.1 ± 0.04% and 38.3 ± 0.16% at 1.6 mg/ml, respectively. The genome consists of a 7,688,855 bp linear chromosome, 6782 protein-coding sequences, and 68 tRNAs. Genomic analysis identified strain VCCM 22513 as Streptomyces parvulus and confirmed a highly conserved core genome and stability of S. parvulus under natural selection. Genome mining revealed the presence of genetic determinants involved in mycothiol and ergothioneine biosynthesis (26 genes), oxidative stress resistance (43 genes), osmoadaptation (87 genes), heat and cold stress (34 genes), aromatic compound degradation (55 genes). Further genome-wide comparison between S. parvulus VCCM 22513 and 11 Streptomyces genomes showed that VCCM 22513 possesses significantly higher copies of genes involved in mycothiol and ergothioneine biosynthesis. In support of this finding, the strain exhibited much resistance to 0.6–1.0 M H2O2 and 6% (w/v) NaCl as compared to Streptomyces cavourensis YBQ59 isolated from Cinnamomum cassia Prels. In addition, the complete pathways for degradation of aromatic compounds including protocatechuate, gentisate, 4-hydroxyphenylpyruvate, cinnamate, 3-phenylpropionate, and styrene were only identified in the genome of VCCM 22513.
Conclusions
The present study revealed for the first time adaptive responses of mangrove endophytic S. parvulus VCCM 22513 to survive in hostile environment. The information shown here provided better understanding of underlying mechanisms related to adaptation and partially plant-microbe interaction of Streptomyces associated with mangrove plants.
Collapse
|
3
|
Quach NT, Nguyen Vu TH, Bui TL, Pham AT, An Nguyen TT, Xuan Le TT, Thuy Ta TT, Dudhagara P, Phi QT. Genome-Guided Investigation Provides New Insights into Secondary Metabolites of Streptomyces parvulus SX6 from Aegiceras corniculatum. Pol J Microbiol 2022; 71:381-394. [DOI: 10.33073/pjm-2022-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/07/2022] Open
Abstract
Abstract
Whole-genome sequencing and genome mining are recently considered an efficient approach to shine more light on the underlying secondary metabolites of Streptomyces. The present study unearths the biosynthetic potential of endophytic SX6 as a promising source of biologically active substances and plant-derived compounds for the first time. Out of 38 isolates associated with Aegiceras corniculatum (L.) Blanco, Streptomyces parvulus SX6 was highly active against Pseudomonas aeruginosa ATCC® 9027™ and methicillin-resistant Staphylococcus epidermidis (MRSE) ATCC® 35984™. Additionally, S. parvulus SX6 culture extract showed strong cytotoxicity against Hep3B, MCF-7, and A549 cell lines at a concentration of 30 μg/ml, but not in non-cancerous HEK-293 cells. The genome contained 7.69 Mb in size with an average G + C content of 72.8% and consisted of 6,779 protein-coding genes. AntiSMASH analysis resulted in the identification of 29 biosynthetic gene clusters (BGCs) for secondary metabolites. Among them, 4 BGCs showed low similarity (28–67% of genes show similarity) to actinomycin, streptovaricin, and polyoxypeptin gene clusters, possibly attributed to antibacterial and anticancer activities observed. In addition, the complete biosynthetic pathways of plant-derived compounds, including daidzein and genistein were identified using genome mining and HPLC-DAD-MS analysis. These findings portray an exciting avenue for future characterization of promising secondary metabolites from mangrove endophytic S. parvulus.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Thi Hanh Nguyen Vu
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Thi Lien Bui
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Anh Tuan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | - Thi Thanh Xuan Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | | | - Pravin Dudhagara
- Department of Biosciences (UGC-SAP-II and DST-FIST-I), Veer Narmad South Gujarat University , Surat , India
| | - Quyet-Tien Phi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi , Vietnam
| |
Collapse
|
4
|
Chauhan J, Gohel S. Exploring plant growth-promoting, biocatalytic, and antimicrobial potential of salt tolerant rhizospheric Georgenia soli strain TSm39 for sustainable agriculture. Braz J Microbiol 2022; 53:1817-1828. [PMID: 35854099 PMCID: PMC9679074 DOI: 10.1007/s42770-022-00794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/06/2022] [Indexed: 01/13/2023] Open
Abstract
To explore the in vivo and in vitro plant growth promoting activities, biocatalytic potential, and antimicrobial activity of salt tolerance rhizoactinobacteria, rhizospheric soil of a halotolerant plant Saueda maritima L. was collected from Rann of Tiker, near Little Rann of Kutch, Gujarat (India). The morphology analysis of the isolated strain TSm39 revealed that the strain belonged to the phylum actinobacteria, as it was stained Gram-positive, displayed filamentous growth, showed spore formation and red pigment production on starch casein agar (SCA). It was identified as Georgenia soli based on 16S rRNA gene sequencing. The Georgenia soli strain TSm39 secreted extracellular amylase, pectinase, and protease. It showed in vitro plant growth-promoting (PGP) activities such as indole acetic acid (IAA) production, siderophore production, ammonia production, and phosphate solubilization. In vivo plant growth-promoting traits of strain TSm39 revealed 30% seed germination on water agar and vigor index 374.4. Additionally, a significant increase (p ≤ 0.05) was found in growth parameters such as root length (16.1 ± 0.22), shoot length (15.2 ± 0.17), the fresh weight (g), and dry weight (g) of the roots (0.43 ± 0.42 and 0.32 ± 0.12), shoots (0.62 ± 0.41 and 0.13 ± 0.03), and leaves (0.42 ± 0.161 and 0.14 ± 0.42) in treated seeds of Vigna radiata L. plant with the strain TSm39 compared to control. The antibiotic susceptibility profile revealed resistance of the strain TSm39 to erythromycin, ampicillin, tetracycline, and oxacillin, while it displayed maximum sensitivity to vancomycin (40 ± 0.72), chloramphenicol (40 ± 0.61), clarithromycin (40 ± 1.30), azithromycin (39 ± 0.42), and least sensitivity to teicoplanin (15 ± 0.15). Moreover, the antimicrobial activity of the strain TSm39 was observed against Gram's positive and Gram's negative microorganisms such as Shigella, Proteus vulgaris, and Bacillus subtilis. These findings indicated that the Georgenia soli strain TSm39 has multiple plant-growth-promoting properties and biocatalytic potential that signifies its agricultural applications in the enhancement of crop yield and quality and would protect the plant against plant pathogens.
Collapse
Affiliation(s)
- Jagruti Chauhan
- grid.412428.90000 0000 8662 9555Department of Biosciences, Saurashtra University, Rajkot, 360005 Gujarat India
| | - Sangeeta Gohel
- grid.412428.90000 0000 8662 9555Department of Biosciences, Saurashtra University, Rajkot, 360005 Gujarat India
| |
Collapse
|
5
|
Oanh N, Huyen N, Dang P, Ton V, Hornick JL. Growth performance, carcass traits, meat quality and composition
in pigs fed diets supplemented with medicinal plants ( Bindens
pilosa L., Urena lobata L. and Ramulus cinnamomi) powder. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/143106/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Quach NT, Nguyen QH, Vu THN, Le TTH, Ta TTT, Nguyen TD, Van Doan T, Van Nguyen T, Dang TT, Nguyen XC, Chu HH, Phi QT. Plant-derived bioactive compounds produced by Streptomyces variabilis LCP18 associated with Litsea cubeba (Lour.) Pers as potential target to combat human pathogenic bacteria and human cancer cell lines. Braz J Microbiol 2021; 52:1215-1224. [PMID: 33934292 PMCID: PMC8324668 DOI: 10.1007/s42770-021-00510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
To date, endophytic actinomycetes have been well-documented as great producers of novel antibiotics and important pharmaceutical leads. The present study aimed to evaluate potent bioactivities of metabolites synthesized by the strain LCP18 residing in the Vietnamese medicinal plant Litsea cubeba (Lour.) Pers towards human pathogenic bacteria and human cancer cell lines. Endophytic actinomycete strain LCP18 showed considerable inhibition against seven bacterial pathogens and three human tumor cell lines and was identified as species Streptomyces variabilis. Strain S. variabilis LCP18 was phenotypically resistant to fosfomycin, trimethoprim-sulfamethoxazole, dalacin, cefoxitin, rifampicin, and fusidic acid and harbored the two antibiotic biosynthetic genes such as PKS-II and NRPS. Further purification and structural elucidation of metabolites from the LCP18 extract revealed five plant-derived bioactive compounds including isopcrunetin, genistein, daidzein, syringic acid, and daucosterol. Among those, isoprunetin, genistein, and daidzein exhibited antibacterial activity against Salmonella typhimurium ATCC 14,028 and methicillin-resistant Staphylococcus epidermidis ATCC 35,984 with the MIC values ranging from 16 to 128 µg/ml. These plant-derived compounds also exhibited cytotoxic effects against human lung cancer cell line A549 with IC50 values of less than 46 μM. These findings indicated that endophytic S. variabilis LCP18 can be an alternative producer of plant-derived compounds which significantly show potential applications in combating bacterial infections and inhibition against lung cancer cell lines.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, 10000, Vietnam
| | - Quang Huy Nguyen
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi, 10000, Vietnam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, 10000, Vietnam
| | - Thi Thu Hang Le
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi, 10000, Vietnam
| | - Thi Thu Thuy Ta
- Department of Biotechnology, Hanoi Open University, Hanoi, 10000, Vietnam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 10000, Vietnam
| | - Thuoc Van Doan
- Faculty of Biology, Hanoi National University of Education, Hanoi, 10000, Vietnam
| | - The Van Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10000, Vietnam
| | - Tat Thanh Dang
- Department of Science and Technology, Ministry of Industry and Trade, Hanoi, 10000, Vietnam
| | - Xuan Canh Nguyen
- Vietnam National University of Agriculture, Hanoi, 10000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, 10000, Vietnam
| | - Quyet Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10000, Vietnam.
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, 10000, Vietnam.
| |
Collapse
|
7
|
Nguyen QH, Nguyen HV, Vu THN, Chu-Ky S, Vu TT, Hoang H, Quach NT, Bui TL, Chu HH, Khieu TN, Sarter S, Li WJ, Phi QT. Characterization of Endophytic Streptomyces griseorubens MPT42 and Assessment of Antimicrobial Synergistic Interactions of its Extract and Essential Oil from Host Plant Litsea cubeba. Antibiotics (Basel) 2019; 8:E197. [PMID: 31661781 PMCID: PMC6963632 DOI: 10.3390/antibiotics8040197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to evaluate the synergistic effects of the crude ethyl acetate extract (CEAE) from endophytic actinomycete MPT42 and essential oil (EO) of the same host plant Litsea cubeba. The isolate MPT42, exhibiting broad-spectrum antimicrobial activities and harboring all three antibiotic-related biosynthetic genes pks-I, pks-II, and nrps, was identified as Streptomycete griseorubens based on an analysis of the morphology, physiology, and 16S rDNA sequence. Minimum inhibitory concentrations (MICs) and the fractional inhibitory concentration index were used to estimate the synergistic effects of various combined ratios between CEAE or antibiotics (erythromycin, vancomycin) and EO toward 13 microbial strains including pathogens. L. cubeba fruit EO, showing the main chemical constituents of 36.0% citral, 29.6% carveol, and 20.5% limonene, revealed an active-low against tested microbes (MICs ≥ 600 μg/mL). The CEAE of S. griseorubens culture exhibited moderate-strong antimicrobial activities against microbes (MICs = 80-600 μg/mL). Analysis of the mechanism of action of EO on Escherichia coli ATCC 25922 found that bacterial cells were dead after 7 h of the EO treatment at 1 MIC (5.5 mg/mL), where 62% cells were permeabilized after 2 h and 3% of them were filament (length ≥ 6 μm). Combinations of CEAE, erythromycin, or vancomycin with EO led to significant synergistic antimicrobial effects against microbes with 4-16 fold reduction in MIC values when compared to their single use. Interestingly, the vancomycin-EO combinations exhibited a strong synergistic effect against five Gram-negative bacterial species. This could assume that the synergy was possibly due to increasing the cell membrane permeability by the EO acting on the bacterial cells, which allows the uptake and diffusion of antimicrobial substances inside the cell easily. These findings in the present study therefore propose a possible alternative to combat the emergence of multidrug-resistant microbes in veterinary and clinics.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
| | - Hai Van Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, 1, Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam.
| | - Thi Hanh-Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
| | - Son Chu-Ky
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, 1, Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam.
| | - Thu Trang Vu
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, 1, Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam.
| | - Ha Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
| | - Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
| | - Thi Lien Bui
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
| | - Thi Nhan Khieu
- Ministry of Education and Training, 49 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam.
| | - Samira Sarter
- CIRAD, UMR ISEM, University Montpellier, F-34398 Montpellier, France.
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, F-34398 Montpellier, France.
| | - Wen-Jun Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, China.
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam.
| |
Collapse
|