1
|
Wang G, Chen L, Tang W, Wang Y, Zhang Q, Wang H, Zhou X, Wu H, Guo L, Dou M, Liu L, Wang B, Lin J, Xie B, Wang Z, Liu Z, Ming R, Zhang J. Identifying a melanogenesis-related candidate gene by a high-quality genome assembly and population diversity analysis in Hypsizygus marmoreus. J Genet Genomics 2021; 48:75-87. [PMID: 33744162 DOI: 10.1016/j.jgg.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Hypsizygus marmoreus is one of the most important edible fungi in Basidiomycete division and includes white and gray strains. However, very limited knowledge is known about the genomic structures and the genetic basis for the white/gray diversity of this mushroom. Here, we report the near-complete high-quality H. marmoreus genome at the chromosomal level. Comparative genomics analysis indicates that chromosome structures were relatively conserved, and variations in collinearity and chromosome number were mainly attributed by chromosome split/fusion events in Aragicales, whereas the fungi genome experienced many genomic chromosome fracture, fusion, and genomic replication events after the split of Aragicales from Basidiomycetes. Resequencing of 57 strains allows us to classify the population into four major groups and associate genetic variations with morphological features, indicating that white strains were not originated independently. We further generated genetic populations and identified a cytochrome P450 as the candidate causal gene for the melanogenesis in H. marmoreus based on bulked segregant analysis (BSA) and comparative transcriptome analysis. The high-quality H. marmoreus genome and diversity data compiled in this study provide new knowledge and resources for the molecular breeding of H. marmoreus as well as the evolution of Basidiomycete.
Collapse
Affiliation(s)
- Gang Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Geographical Science, Nantong University, Nantong 226001, China
| | - Lianfu Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weiqi Tang
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou 350108, China
| | - Yuanyuan Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbo Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Zhou
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haofeng Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Guo
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijie Dou
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxian Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - ZhongJian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
3
|
Wu YY, Shang JJ, Li Y, Zhou CL, Hou D, Li JL, Tan Q, Bao DP, Yang RH. The complete mitochondrial genome of the Basidiomycete edible fungus Hypsizygus marmoreus. Mitochondrial DNA B Resour 2018; 3:1241-1243. [PMID: 33474477 PMCID: PMC7800908 DOI: 10.1080/23802359.2018.1532343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 11/28/2022] Open
Abstract
The complete mitochondrial genome of the edible fungus Hypsizygus marmoreus was published in this paper. It was determined using Pacbio and Illumina sequencing. The complete mitochondrial DNA (mtDNA) is 106,417 bp in length with a GC content of 31.74%, which was the fourth large mitogenome in Agaricales. The circular mitogenome encoded 67 protein-coding genes and one ribosomal RNAs (rns). Among these genes, 13 conserved protein-coding genes were determined in the genome, including 6 subunits of NAD dehydrogenase (nad1-4, 4L and 6), three cytochrome oxidases (cox1-3), one apocytochrome b (cob) and three ATP synthases (atp6, apt 8 and apt 9). The phylogenic analysis confirmed that H. marmoreus (Lyophyllaceae) clustered together with Tricholoma matsutake (Tricholomataceae).
Collapse
Affiliation(s)
- Ying-Ying Wu
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun-Jun Shang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chen-Li Zhou
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Di Hou
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jia-Li Li
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Rui-Heng Yang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Genetic diversity analysis of Hypsizygus marmoreus with target region amplification polymorphism. ScientificWorldJournal 2014; 2014:619746. [PMID: 25013861 PMCID: PMC4071973 DOI: 10.1155/2014/619746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022] Open
Abstract
Hypsizygus marmoreus is an industrialized edible mushroom. In the present paper, the genetic diversity among 20 strains collected from different places of China was evaluated by target region amplification polymorphism (TRAP) analysis; the common fragment of TRAPs was sequenced and analyzed. Six fixed primers were designed based on the analysis of H. marmoreus sequences from GenBank database. The genomic DNA extracted from H. marmoreus was amplified with 28 TRAP primer combinations, which generated 287 bands. The average of amplified bands per primer was 10.27 (mean polymorphism is 69.73%). The polymorphism information content (PIC) value for TRAPs ranged from 0.32 to 0.50 (mean PIC value per TRAP primer combination is 0.48), which indicated a medium level of polymorphism among the strains. A total of 36 sequences were obtained from TRAP amplification. Half of these sequences could encode the known or unknown proteins. According to the phylogenetic analysis based on TRAP result, the 20 strains of H. marmoreus were classified into two main groups.
Collapse
|
5
|
Construction of a genetic linkage map based on amplified fragment length polymorphism markers and development of sequence-tagged site markers for marker-assisted selection of the sporeless trait in the oyster mushroom (Pleurotus eryngii). Appl Environ Microbiol 2011; 78:1496-504. [PMID: 22210222 DOI: 10.1128/aem.07052-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large number of spores from fruiting bodies can lead to allergic reactions and other problems during the cultivation of edible mushrooms, including Pleurotus eryngii (DC.) Quél. A cultivar harboring a sporulation-deficient (sporeless) mutation would be useful for preventing these problems, but traditional breeding requires extensive time and labor. In this study, using a sporeless P. eryngii strain, we constructed a genetic linkage map to introduce a molecular breeding program like marker-assisted selection. Based on the segregation of 294 amplified fragment length polymorphism markers, two mating type factors, and the sporeless trait, the linkage map consisted of 11 linkage groups with a total length of 837.2 centimorgans (cM). The gene region responsible for the sporeless trait was located in linkage group IX with 32 amplified fragment length polymorphism markers and the B mating type factor. We also identified eight markers closely linked (within 1.2 cM) to the sporeless locus using bulked-segregant analysis-based amplified fragment length polymorphism. One such amplified fragment length polymorphism marker was converted into two sequence-tagged site markers, SD488-I and SD488-II. Using 14 wild isolates, sequence-tagged site analysis indicated the potential usefulness of the combination of two sequence-tagged site markers in cross-breeding of the sporeless strain. It also suggested that a map constructed for P. eryngii has adequate accuracy for marker-assisted selection.
Collapse
|
6
|
Lim YJ, Lee CY, Park JE, Kim SW, Lee HS, Ro HS. Molecular Genetic Classification of Hypsizigus marmoreus and Development of Strain-specific DNA Markers. 한국균학회지 2010. [DOI: 10.4489/kjm.2010.38.1.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|