1
|
Zhao G, Zhou Z, Li Z, Liu S, Shan Z, Cheng F, Zhou W, Mao J. The differences in main components, enzyme activity, and microbial composition between substandard and normal jiuyao. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4293-4302. [PMID: 36750373 DOI: 10.1002/jsfa.12487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Jiuyao is a critical fermenting agent in traditional huangjiu brewing and it affects the quality of huangjiu. To assess and monitor the quality of jiuyao effectively we determined the differences between two common types of substandard jiuyao and normal jiuyao, with emphasis on the comparison of the main components, enzymatic activity, volatile substances, and microbial community structure. RESULTS The water and starch content, acid protease activity, and esterification capability of type I substandard jiuyao were significantly lower than those of the normal jiuyao, and the protein contents, liquefaction capability, glycation capability, and neutral protease activity were substantially higher than those of the normal jiuyao. Type II substandard jiuyao had significantly lower indices than the normal group except for the starch and free amino acid content, which were significantly higher than those of the normal jiuyao. Significant differences were observed between substandard and normal jiuyao in the content of 21 volatile compounds. 2-Pentylfuran could be used as a marker of substandard jiuyao. Type I substandard jiuyao contained a higher abundance of aerobic Pediococcus and Marivita in comparison with the normal jiuyao. Type II substandard jiuyao consisted of a greater abundance of anaerobic Mucor and Staphylococcus. CONCLUSION The quality of jiuyao was significantly affected by the water content. Due to the different abundances of aerobic and anaerobic bacteria in jiuyao, oxygen may also be an important parameter affecting the quality of jiuyao. We believe that the present study offers a theoretical basis for the evaluation and control of the quality of jiuyao. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoliang Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| | - Zhichu Shan
- Zhejiang Pagoda Brand Shaoxing Rice Wine Co., Ltd, Shaoxing, Zhejiang Province, 312000, China
| | - Fei Cheng
- Zhejiang Pagoda Brand Shaoxing Rice Wine Co., Ltd, Shaoxing, Zhejiang Province, 312000, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jian Mao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| |
Collapse
|
2
|
Bueno de Mesquita CP, Zhou J, Theroux S, Tringe SG. Methylphosphonate Degradation and Salt-Tolerance Genes of Two Novel Halophilic Marivita Metagenome-Assembled Genomes from Unrestored Solar Salterns. Genes (Basel) 2022; 13:genes13010148. [PMID: 35052488 PMCID: PMC8774927 DOI: 10.3390/genes13010148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Aerobic bacteria that degrade methylphosphonates and produce methane as a byproduct have emerged as key players in marine carbon and phosphorus cycles. Here, we present two new draft genome sequences of the genus Marivita that were assembled from metagenomes from hypersaline former industrial salterns and compare them to five other Marivita reference genomes. Phylogenetic analyses suggest that both of these metagenome-assembled genomes (MAGs) represent new species in the genus. Average nucleotide identities to the closest taxon were <85%. The MAGs were assembled with SPAdes, binned with MetaBAT, and curated with scaffold extension and reassembly. Both genomes contained the phnCDEGHIJLMP suite of genes encoding the full C-P lyase pathway of methylphosphonate degradation and were significantly more abundant in two former industrial salterns than in nearby reference and restored wetlands, which have lower salinity levels and lower methane emissions than the salterns. These organisms contain a variety of compatible solute biosynthesis and transporter genes to cope with high salinity levels but harbor only slightly acidic proteomes (mean isoelectric point of 6.48).
Collapse
Affiliation(s)
- Clifton P. Bueno de Mesquita
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
| | - Jinglie Zhou
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
| | - Susanna Theroux
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA;
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|
3
|
Lin Q, Shang L, Wang X, Hu Z, Du H, Wang H. Different dimethylsulphoniopropionate-producing ability of dinoflagellates could affect the structure of their associated bacterial community. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Zhou X, Zhang XA, Jiang ZW, Yang X, Zhang XL, Yang Q. Combined characterization of a new member of Marivita cryptomonadis strain LZ-15-2 isolated from cultivable phycosphere microbiota of highly toxic HAB dinoflagellate Alexandrium catenella LZT09. Braz J Microbiol 2021; 52:739-748. [PMID: 33742357 DOI: 10.1007/s42770-021-00463-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
During our conveying the microbial structures of phycosphere microbiota (PM) derived from diverse marine harmful algal bloom (HAB) dinoflagellates, a new rod-sharped, white-colored cultivable bacterial strain, designated as LZ-15-2, was isolated from the PM of highly toxic Alexandrium catenella LZT09. Phylogenetic analysis of 16S rRNA gene sequence indicated that strain LZ-15-2 belonged to the genus Marivita within the family Rhodobacteraceae, and demonstrated the highest gene similarity of 99.2% to M. cryptomonadis CL-SK44T, and less than 98.65% with other type strains of Marivita. Phylogenomic calculations on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the new isolate and M. cryptomonadis CL-SK44T were 99.86% and 99.88%, respectively. Genomic comparison of strain LZ-15-2 with available genomes of Marivita species further verified its taxonomic position within the genus of Marivita. Moreover, comparative genomics analysis showed a proximal similarity of strain LZ-15-2 with M. cryptomonadis CL-SK44T, and it also revealed an open pan-genome status based on constructed gene accumulation curves among Marivita members with 9,361 and 1,712 genes for the pan- and core-genome analysis, respectively. Based on combined polyphasic taxonomic characteristics, strain LZ-15-2 represents a new member of M. cryptomonadis, and proposed as a potential candidate for further exploration of the detailed mechanisms governing the dynamic cross-kingdom algae-bacteria interactions (ABI) between PM and their algal host LZT09.
Collapse
Affiliation(s)
- Xin Zhou
- ABI Group of GPM Project, Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xiao-Ai Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhi-Wei Jiang
- Institute of Animal Science, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xi Yang
- Institute of Animal Science, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiao-Ling Zhang
- ABI Group of GPM Project, Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiao Yang
- ABI Group of GPM Project, Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China. .,Systems Biology Laboratory, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Physicochemical Parameters Affecting the Distribution and Diversity of the Water Column Microbial Community in the High-Altitude Andean Lake System of La Brava and La Punta. Microorganisms 2020; 8:microorganisms8081181. [PMID: 32756460 PMCID: PMC7464526 DOI: 10.3390/microorganisms8081181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/23/2022] Open
Abstract
Due to the low incidence of precipitation attributed to climate change, many high-altitude Andean lakes (HAALs) and lagoons distributed along the central Andes in South America may soon disappear. This includes La Brava–La Punta, a brackish lake system located south of the Salar de Atacama within a hyper-arid and halophytic biome in the Atacama Desert. Variations in the physicochemical parameters of the water column can induce changes in microbial community composition, which we aimed to determine. Sixteen sampling points across La Brava–La Punta were studied to assess the influence of water physicochemical properties on the aquatic microbial community, determined via 16S rRNA gene analysis. Parameters such as pH and the concentrations of silica, magnesium, calcium, salinity, and dissolved oxygen showed a more homogenous pattern in La Punta samples, whereas those from La Brava had greater variability; pH and total silica were significantly different between La Brava and La Punta. The predominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia. The genera Psychroflexus (36.85%), Thiomicrospira (12.48%), and Pseudomonas (7.81%) were more abundant in La Brava, while Pseudospirillum (20.73%) and Roseovarius (17.20%) were more abundant in La Punta. Among the parameters, pH was the only statistically significant factor influencing the diversity within La Brava lake. These results complement the known microbial diversity and composition in the HAALs of the Atacama Desert.
Collapse
|
6
|
Sun X, Chu L, Mercando E, Romero I, Hollander D, Kostka JE. Dispersant Enhances Hydrocarbon Degradation and Alters the Structure of Metabolically Active Microbial Communities in Shallow Seawater From the Northeastern Gulf of Mexico. Front Microbiol 2019; 10:2387. [PMID: 31749769 PMCID: PMC6842959 DOI: 10.3389/fmicb.2019.02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
Dispersant application is a primary emergency oil spill response strategy and yet the efficacy and unintended consequences of this approach in marine ecosystems remain controversial. To address these uncertainties, ex situ incubations were conducted to quantify the impact of dispersant on petroleum hydrocarbon (PHC) biodegradation rates and microbial community structure at as close as realistically possible to approximated in situ conditions [2 ppm v/v oil with or without dispersant, at a dispersant to oil ratio (DOR) of 1:15] in surface seawater. Biodegradation rates were not substantially affected by dispersant application at low mixing conditions, while under completely dispersed conditions, biodegradation was substantially enhanced, decreasing the overall half-life of total PHC compounds from 15.4 to 8.8 days. While microbial respiration and growth were not substantially altered by dispersant treatment, RNA analysis revealed that dispersant application resulted in pronounced changes to the composition of metabolically active microbial communities, and the abundance of nitrogen-fixing prokaryotes, as determined by qPCR of nitrogenase (nifH) genes, showed a large increase. While the Gammaproteobacteria were enriched in all treatments, the Betaproteobacteria and different families of Alphaproteobacteria predominated in the oil and dispersant treatment, respectively. Results show that mixing conditions regulate the efficacy of dispersant application in an oil slick, and the quantitative increase in the nitrogen-fixing microbial community indicates a selection pressure for nitrogen fixation in response to a readily biodegradable, nitrogen-poor substrate.
Collapse
Affiliation(s)
- Xiaoxu Sun
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, China
| | - Lena Chu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Elisa Mercando
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Isabel Romero
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| | - David Hollander
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| | - Joel E Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
7
|
Hetharua B, Min D, Liao H, Lin L, Xu H, Tian Y. Litorivita pollutaquae gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae isolated from surface seawater of Xiamen Port, China. Int J Syst Evol Microbiol 2018; 68:3908-3913. [PMID: 30339119 DOI: 10.1099/ijsem.0.003084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative Rhodobacterales strain, designated as FSX-11T, was isolated from surface seawater of Xiamen port in China. Strain FSX-11T showed less than 96.5 % 16S rRNA gene sequence similarity to the type strains of species with validly published names. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate formed a distinct monophyletic clade within the family Rhodobacteriaceae and clustered distantly with the genera Thalassobius and Marivita. Cells of strain FSX-11T were non-motile, oval-shaped and facultative anaerobic. Optimal growth occurred at 20-30 °C, at pH 7.0-8.0 and in the presence of 2-3 % NaCl (w/v). The major respiratory quinone was ubiquinone-10. Summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), 11-methyl C18 : 1ω7c and C16 : 0 were the major fatty acids. The DNA G+C content of strain FSX-11T was 58.7 mol%. On the basis of phylogenetic analysis, phenotypic and chemotaxonomic characteristics and 16S rRNA gene signature nucleotide patterns, strain FSX-11T represents a novel species in a novel genus within the family Rhodobacteraceae, for which the name Litorivita pollutaquae gen. nov., sp. nov. is proposed. The type strain is FSX-11T (=JCM 32715T=MCCC 1K03503T).
Collapse
Affiliation(s)
- Buce Hetharua
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Derong Min
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Hu Liao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Li'an Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Hong Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
8
|
Zheng Q, Wang Y, Xie R, Lang AS, Liu Y, Lu J, Zhang X, Sun J, Suttle CA, Jiao N. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures. Appl Environ Microbiol 2018; 84:e01517-17. [PMID: 29150500 PMCID: PMC5772231 DOI: 10.1128/aem.01517-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023] Open
Abstract
Interactions between photoautotrophic and heterotrophic microorganisms are central to the marine microbial ecosystem. Lab cultures of one of the dominant marine photoautotrophs, Synechococcus, have historically been difficult to render axenic, presumably because these bacteria depend upon other organisms to grow under these conditions. These tight associations between Synechococcus and heterotrophic bacteria represent a good relevant system to study interspecies interactions. Ten individual Synechococcus strains, isolated from eutrophic and oligotrophic waters, were chosen for investigation. Four to six dominant associated heterotrophic bacteria were detected in the liquid cultures of each Synechococcus isolate, comprising members of the Cytophaga-Flavobacteria-Bacteroides (CFB) group (mainly from Flavobacteriales and Cytophagales), Alphaproteobacteria (mainly from the Roseobacter clade), Gammaproteobacteria (mainly from the Alteromonadales and Pseudomonadales), and Actinobacteria The presence of the CFB group, Gammaproteobacteria, and Actinobacteria showed clear geographic patterns related to the isolation environments of the Synechococcus bacteria. An investigation of the population dynamics within a growing culture (XM-24) of one of the isolates, including an evaluation of the proportions of cells that were free-living versus aggregated/attached, revealed interesting patterns for different bacterial groups. In Synechococcus sp. strain XM-24 culture, flavobacteria, which was the most abundant group throughout the culture period, tended to be aggregated or attached to the Synechococcus cells, whereas the actinobacteria demonstrated a free-living lifestyle, and roseobacters displayed different patterns depending on the culture growth phase. Factors contributing to these succession patterns for the heterotrophs likely include interactions among the culture community members, their relative abilities to utilize different compounds produced by Synechococcus cells and changes in the compounds released as culture growth proceeds, and their responses to other changes in the environmental conditions throughout the culture period.IMPORTANCE Marine microbes exist within an interactive ecological network, and studying their interactions is an important part of understanding their roles in global biogeochemical cycling and the determinants of microbial diversity. In this study, the dynamic relationships between Synechococcus spp. and their associated heterotrophic bacteria were investigated. Synechococcus-associated heterotrophic bacteria had similar geographic distribution patterns as their "host" and displayed different lifestyles (free-living versus attached/aggregated) according to the Synechococcus culture growth phases. Combined organic carbon composition and bacterial lifestyle data indicated a potential for succession in carbon utilization patterns by the dominant associated heterotrophic bacteria. Comprehending the interactions between photoautotrophs and heterotrophs and the patterns of organic carbon excretion and utilization is critical to understanding their roles in oceanic biogeochemical cycling.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Rui Xie
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yanting Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Jiayao Lu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| | - Xiaodong Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, and Botany and Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|