1
|
Priyanka, Kumar S, Sharma S. Development of bacterial bioformulations using response surface methodology. J Appl Microbiol 2024; 135:lxae263. [PMID: 39435675 DOI: 10.1093/jambio/lxae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
AIM Bacterial consortia exhibiting plant growth promoting properties have emerged as a sustainable approach for crop improvement. As the main challenge associated with them is loss of viability and performance under natural conditions, a robust approach for designing bioformulation is needed. In this study, an efficient bioformulation was developed using spontaneous mutants of three bacterial strains for growth promotion of Cajanus cajan. METHODS AND RESULTS Optimization of additives for solid [carboxymethylcellulose (CMC), and glycerol] and liquid [polysorbate, CMC, and polyvinyl pyrrolidone (PVP)] bioformulations was done by response surface methodology using central composite design. The stability of each bioinoculant in the formulation was assessed at 30°C and 4°C. The efficiency of the liquid bioformulation was checked in planta in sterile, and subsequently in non-sterile, soil. The maximum cell count was observed in solid bioformulation with 0.1 g l-1 CMC and 50% glycerol (8.10 × 108, 3.69 × 108, and 7.39 × 108 CFU g-1 for Priestia megaterium, Azotobacter chroococcum, and Pseudomonas sp. SK3, respectively) and in liquid bioformulation comprising 1% PVP, 0.1 g l-1 CMC, and 0.025% polysorbate (8 × 109, 3.8 × 109, and 6.82 × 109 CFU ml-1 for P. megaterium, A. chroococcum, and Pseudomonas sp. SK3, respectively). The bioinoculants showed a higher viability (6 months) at 4°C compared to 30°C. Triple culture consortium enhanced plant growth in comparison to the control. The strains could be detected in soil till 45 days after sowing. CONCLUSIONS The study established a systematic process for developing a potent bioformulation to promote agricultural sustainability. Using mutant strains, the bioinoculants could be tracked. In planta assays revealed that the triple culture consortium out-performed mono and dual cultures in terms of impact on plant growth.
Collapse
Affiliation(s)
- Priyanka
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shashi Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Khan A, Singh AV, Gautam SS, Agarwal A, Punetha A, Upadhayay VK, Kukreti B, Bundela V, Jugran AK, Goel R. Microbial bioformulation: a microbial assisted biostimulating fertilization technique for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1270039. [PMID: 38148858 PMCID: PMC10749938 DOI: 10.3389/fpls.2023.1270039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023]
Abstract
Addressing the pressing issues of increased food demand, declining crop productivity under varying agroclimatic conditions, and the deteriorating soil health resulting from the overuse of agricultural chemicals, requires innovative and effective strategies for the present era. Microbial bioformulation technology is a revolutionary, and eco-friendly alternative to agrochemicals that paves the way for sustainable agriculture. This technology harnesses the power of potential microbial strains and their cell-free filtrate possessing specific properties, such as phosphorus, potassium, and zinc solubilization, nitrogen fixation, siderophore production, and pathogen protection. The application of microbial bioformulations offers several remarkable advantages, including its sustainable nature, plant probiotic properties, and long-term viability, positioning it as a promising technology for the future of agriculture. To maintain the survival and viability of microbial strains, diverse carrier materials are employed to provide essential nourishment and support. Various carrier materials with their unique pros and cons are available, and choosing the most appropriate one is a key consideration, as it substantially extends the shelf life of microbial cells and maintains the overall quality of the bioinoculants. An exemplary modern bioformulation technology involves immobilizing microbial cells and utilizing cell-free filters to preserve the efficacy of bioinoculants, showcasing cutting-edge progress in this field. Moreover, the effective delivery of bioformulations in agricultural fields is another critical aspect to improve their overall efficiency. Proper and suitable application of microbial formulations is essential to boost soil fertility, preserve the soil's microbial ecology, enhance soil nutrition, and support crop physiological and biochemical processes, leading to increased yields in a sustainable manner while reducing reliance on expensive and toxic agrochemicals. This manuscript centers on exploring microbial bioformulations and their carrier materials, providing insights into the selection criteria, the development process of bioformulations, precautions, and best practices for various agricultural lands. The potential of bioformulations in promoting plant growth and defense against pathogens and diseases, while addressing biosafety concerns, is also a focal point of this study.
Collapse
Affiliation(s)
- Amir Khan
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Ajay Veer Singh
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Shiv Shanker Gautam
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Aparna Agarwal
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Arjita Punetha
- School of Environmental Science and Natural Resource, Dehradun, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agriculture University, Samastipur, India
| | - Bharti Kukreti
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Vindhya Bundela
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Garhwal Regional Centre, Srinager, Uttarakhand, India
| | - Reeta Goel
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Biosurfactant based formulation of Pseudomonas guariconensis LE3 with multifarious plant growth promoting traits controls charcoal rot disease in Helianthus annus. World J Microbiol Biotechnol 2021; 37:55. [PMID: 33615389 DOI: 10.1007/s11274-021-03015-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Biosurfactants are environment compatible surface-active biomolecules with multifunctional properties which can be utilized in various industries. In this study a biosurfactant producing novel plant growth promoting isolate Pseudomonas guariconensis LE3 from the rhizosphere of Lycopersicon esculentum is presented as biostimulant and biocontrol agent. Biosurfactant extracted from culture was characterized to be mixture of various mono- and di-rhamnolipids with antagonistic activity against Macrophomina phaseolina, causal agent of charcoal rot in diverse crops. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) analysis confirmed the rhamnolipid nature of biosurfactant. PCR analysis established the presence of genes involved in synthesis of antibiotics diacetylphloroglucinol, phenazine 1-carboxylic acid and pyocyanin, and lytic enzymes chitinase and endoglucanase suggesting biocontrol potential of the isolate. Plant growth promoting activities shown by LE3 were phosphate solubilization and production of siderophores, indole acetic acid (IAA), ammonia and 1-aminocyclopropane-1-carboxylate deaminase (ACCD). To assemble all the characteristics of LE3 various bioformuations were developed. Amendment of biosurfactant in bioformulation of LE3 cells improved the shelf life. Biosurfactant amended formulation of LE3 cells was most effective in biocontrol of charcoal rot disease of sunflower and growth promotion in field conditions. The root adhered soil mass of plantlets inoculated with LE3 plus biosurfactant was significantly higher over control. Biosurfactant amended formulation of LE3 cells caused maximum yield enhancement (80.80%) and biocontrol activity (75.45%), indicating that addition of biosurfactant improves the plant-bacterial interaction and soil properties leading to better control of disease and overall improvement of plant health and yield.
Collapse
|
4
|
Dheeman S, Baliyan N, Dubey RC, Maheshwari DK, Kumar S, Chen L. Combined effects of rhizo-competitive rhizosphere and non-rhizosphere Bacillus in plant growth promotion and yield improvement of Eleusine coracana (Ragi). Can J Microbiol 2019; 66:111-124. [PMID: 31671281 DOI: 10.1139/cjm-2019-0103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study emphasizes the beneficial role of rhizo-competitive Bacillus spp. isolated from rhizospheric and non-rhizospheric soil in plant growth promotion and yield improvement via nitrogen fixation and biocontrol of Sclerotium rolfsii causing foot rot disease in Eleusine coracana (Ragi). The selection of potent rhizobacteria was based on plant-growth-promoting attributes using Venn set diagram and Bonitur scale. Bacillus pumilus MSTA8 and Bacillus amyloliquefaciens MSTD26 were selected because they were effective in root colonization, rhizosphere competence, and biofilm formation using root exudates of E. coracana L. rich with carbohydrates, proteins, and amino acids. The relative chemotaxis index of the isolates expressed the invasive behavior of the rhizosphere. During pot and field trials, the consortium of the rhizobacteria in a vermiculite carrier increased the grain yield by 37.87%, with a significant harvest index of 16.45. Soil analysis after the field trial revealed soil reclamation potentials to manage soil nutrition and fertility. Both indexes ensured crop protection and production in eco-safe ways and herald commercialization of Bacillus bio-inoculant for improvement in crop production and disease management of E. coracana.
Collapse
Affiliation(s)
- Shrivardhan Dheeman
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249404, Uttarakhand, India.,Department of Microbiology, School of Life Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun 248161, Uttarakhand, India
| | - Nitin Baliyan
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249404, Uttarakhand, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249404, Uttarakhand, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249404, Uttarakhand, India
| | - Sandeep Kumar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249404, Uttarakhand, India
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
5
|
Baliyan N, Dheeman S, Maheshwari DK, Dubey RC, Vishnoi VK. Rhizobacteria isolated under field first strategy improved chickpea growth and productivity. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-00042-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Agarwal M, Dheeman S, Dubey RC, Kumar P, Maheshwari DK, Bajpai VK. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol Res 2017; 205:40-47. [PMID: 28942843 DOI: 10.1016/j.micres.2017.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
Abstract
Chitinase and surfactin-mediated biocontrol of Rhizoctonia solani and Fusarium oxysporum causing wilt and root rot of Fagopyrum esculentum respectively has been studied in this communication. Bacillus pumilus MSUA3 as a potential bacterial strain strongly inhibited the growth of R. solani and F. oxysporum involving the chitinolytic enzymes and an antibiotic surfactin. Plant growth promoting attributes seem to be involved in plant growth promotion and yield attributes. The action of cell-free culture supernatant (CFCS) was found deleterious to F. oxysporum and R. solani even in the heat-treated (boiled/autoclaved) CFCS. The possible involvement of surfactin in disease control was revealed by colony PCR amplification of SrfA. Chitinolytic enzyme and antibiotic surfactin evidenced differential biocontrol of F. oxysporum and R. solani by B. pumilus MSUA3. A significant reduction in disease index under gnotobiotic conditions and productivity enhancement of F. esculentum using vermiculite-based bioformulation revealed B. pumilus MSUA3 as a successful potential biocontrol agent (BCA) and an efficient plant growth promoting rhizobacterium (PGPR) for disease management and productivity enhancement of buckwheat crop.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249-404, Uttrakhand, India
| | - Shrivardhan Dheeman
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249-404, Uttrakhand, India
| | - Ramesh Chand Dubey
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249-404, Uttrakhand, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249-404, Uttrakhand, India.
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea.
| |
Collapse
|
7
|
Cassani E, Cilia R, Laguna J, Barichella M, Contin M, Cereda E, Isaias IU, Sparvoli F, Akpalu A, Budu KO, Scarpa MT, Pezzoli G. Mucuna pruriens for Parkinson's disease: Low-cost preparation method, laboratory measures and pharmacokinetics profile. J Neurol Sci 2016; 365:175-80. [PMID: 27206902 DOI: 10.1016/j.jns.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/17/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurological condition. Levodopa (LD) is the gold standard therapy for PD patients. Most PD patients in low-income areas cannot afford long-term daily Levodopa therapy. The aim of our study was to investigate if Mucuna pruriens (MP), a legume with high LD content that grows in tropical regions worldwide, might be potential alternative for poor PD patients. METHODS We analyzed 25 samples of MP from Africa, Latin America and Asia. We measured the content in LD in various MP preparations (dried, roasted, boiled). LD pharmacokinetics and motor response were recorded in four PD patients, comparing MP vs. LD+Dopa-Decarboxylase Inhibitor (DDCI) formulations. RESULTS Median LD concentration in dried MP seeds was 5.29%; similar results were obtained in roasted powder samples (5.3%), while boiling reduced LD content up to 70%. Compared to LD+DDCI, MP extract at similar LD dose provided less clinical benefit, with a 3.5-fold lower median AUC. CONCLUSION Considering the lack of a DDCI, MP therapy may provide clinical benefit only when content of LD is at least 3.5-fold the standard LD+DDCI. If long-term MP proves to be safe and effective in controlled clinical trials, it may be a sustainable alternative therapy for PD in low-income countries.
Collapse
Affiliation(s)
- Erica Cassani
- Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milan, Italy.
| | - Roberto Cilia
- Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milan, Italy
| | - Janeth Laguna
- Neurology Clinic, Clinica Niño Jesus, Santa Cruz, Bolivia
| | | | - Manuela Contin
- IRCCS-Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Emanuele Cereda
- Nutrition and Dietetics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ioannis U Isaias
- Department of Pathophysiology and Transplantation, LAMB Pierfranco & Luisa Mariani, University of Milan, Milan, Italy
| | | | | | - Kwabena Ofosu Budu
- Institute of Agricultural Research, College of Agriculture & Consumer Sciences, University of Ghana, Ghana
| | | | - Gianni Pezzoli
- Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milan, Italy
| |
Collapse
|
8
|
Ruíz-Valdiviezo VM, Canseco LMCV, Suárez LAC, Gutiérrez-Miceli FA, Dendooven L, Rincón-Rosales R. Symbiotic potential and survival of native rhizobia kept on different carriers. Braz J Microbiol 2015; 46:735-42. [PMID: 26413054 PMCID: PMC4568871 DOI: 10.1590/s1517-838246320140541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 08/15/2014] [Indexed: 11/22/2022] Open
Abstract
Native rhizobia are ideal for use as commercial legume inoculants. The characteristics of the carrier used to store the inoculants are important for the survival and symbiotic potential of the rhizobia. The objective of this study was to investigate the effects of peat (PEAT), perlite sugarcane bagasse (PSB), carboxymethyl cellulose plus starch (CMCS), and yeast extract mannitol supplemented with mannitol (YEMM) on the survival, nodulation potential and N2 fixation capacity of the native strains Sinorhizobium mexicanum ITTG R7(T) and Rhizobium calliandrae LBP2-1(T) and of the reference strain Rhizobium etli CFN42(T). A factorial design (4 × 3) with four repetitions was used to determine the symbiotic potential of the rhizobial strains. The survival of the strains was higher for PEAT (46% for strain LBP2-1(T), 167% for strain CFN42(T) and 219% for strain ITTG R7(T)) than for the other carriers after 240 days, except for CFN42(T) kept on CMCS (225%). All the strains kept on the different carriers effectively nodulated common bean, with the lowest number of nodules found (5 nodules) when CFN42(T) was kept on CMCS and with the highest number of nodules found (28 nodules) when ITTG R7(T) was kept on PSB. The nitrogenase activity was the highest for ITTG R7(T) kept on PEAT (4911 μmol C2H4 per fresh weight nodule h(-1)); however, no activity was found when the strains were kept on YEMM. Thus, the survival and symbiotic potential of the rhizobia depended on the carrier used to store them.
Collapse
Affiliation(s)
| | | | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, Abacus, Cinvestav, DF, México
| | - Reiner Rincón-Rosales
- Laboratory of Biotechnology, Instituto Tecnológico de Tuxtla Gutiérrez, Chiapas, México
| |
Collapse
|