Hannam AG. Current computational modelling trends in craniomandibular biomechanics and their clinical implications.
J Oral Rehabil 2010;
38:217-34. [PMID:
20819138 DOI:
10.1111/j.1365-2842.2010.02149.x]
[Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid-body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non-linear and non-isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus.
Collapse