1
|
Chansaenroj A, Kornsuthisopon C, Roytrakul S, Phothichailert S, Rochanavibhata S, Fournier BPJ, Srithanyarat SS, Nowwarote N, Osathanon T. Indirect Immobilised Jagged-1 Enhances Matrisome Proteins Associated with Osteogenic Differentiation of Human Dental Pulp Stem Cells: A Proteomic Study. Int J Mol Sci 2022; 23:ijms232213897. [PMID: 36430375 PMCID: PMC9694941 DOI: 10.3390/ijms232213897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Suphalak Phothichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
| | | | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (N.N.); (T.O.)
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (N.N.); (T.O.)
| |
Collapse
|
2
|
Pongjantarasatian S, Nowwarote N, Rotchanakitamnuai V, Srirodjanakul W, Saehun R, Janebodin K, Manokawinchoke J, Fournier BPJ, Osathanon T. A γ-Secretase Inhibitor Attenuates Cell Cycle Progression and Invasion in Human Oral Squamous Cell Carcinoma: An In Vitro Study. Int J Mol Sci 2022; 23:8869. [PMID: 36012128 PMCID: PMC9408752 DOI: 10.3390/ijms23168869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is associated with many human malignancies, including oral squamous cell carcinoma (OSCC). However, the exact function of Notch signaling in OSCC remains unclear. Here, we investigated the effect of Notch signaling inhibition using a γ-secretase inhibitor (DAPT) on OSCC behaviours in vitro. Bioinformatic analysis of public-available gene expression profiles revealed the dysregulation of the Notch signaling pathway in OSCC compared with normal tissues, indicating the role of Notch signaling in OSCC regulation. RNA sequencing analysis of DAPT-treated human OSCC cells revealed the dysregulation of genes related to cell cycle-related pathways. Blocking Notch signaling significantly inhibited cell proliferation. DAPT-induced G0/G1 cell cycle arrest induced cell apoptosis. Furthermore, cell migration and invasion were also reduced in DAPT-treated cells. These findings indicate that Notch signaling activation participates in OSCC regulation by promoting cell growth, cell cycle progression, cell migration, and invasion. These mechanisms could facilitate OSCC progression. These results imply the potential use of Notch signaling inhibitors as a candidate adjuvant treatment in OSCC patients.
Collapse
Affiliation(s)
- Sarai Pongjantarasatian
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry, Universite Paris Cite, 75006 Paris, France
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Universite Paris Cite, Sorbonne Universite, 75006 Paris, France
| | - Varumporn Rotchanakitamnuai
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watcharee Srirodjanakul
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ritmongkol Saehun
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kajohnkiart Janebodin
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Department of Oral Biology, Faculty of Dentistry, Universite Paris Cite, 75006 Paris, France
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Molecular Oral Pathophysiology, Universite Paris Cite, Sorbonne Universite, 75006 Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Comprehensive Integrated Single-Cell Whole Transcriptome Analysis Revealed the p-EMT Tumor Cells-CAFs Communication in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23126470. [PMID: 35742914 PMCID: PMC9223794 DOI: 10.3390/ijms23126470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) and partial epithelial–mesenchymal transition (p-EMT) tumor cells are closed together and contribute to the tumor progression of oral squamous cell carcinoma (OSCC). In the present study, we deeply analyzed and integrated OSCC single-cell RNA sequencing datasets to define OSCC CAFs and p-EMT subpopulations. We highlighted the cell–cell interaction network of CAFs and p-EMT tumor cells and suggested biomarkers for the diagnosis and prognosis of OSCC during the metastasis condition. The analysis discovered four subtypes of CAFs: one p-EMT tumor cell population, and cycling tumor cells as well as TNFSF12-TNFRSF25/TNFRSF12A interactions between CAFs and p-EMT tumor cells during tumor metastasis. This suggests the prediction of therapeutically targetable checkpoint receptor–ligand interactions between CAFs and p-EMT tumor cells in OSCC regarding the metastasis status.
Collapse
|
4
|
The association of long non-coding RNA in the prognosis of oral squamous cell carcinoma. Genes Genomics 2022; 44:327-342. [PMID: 35023067 DOI: 10.1007/s13258-021-01194-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oral cancer is considered one of the most prevalent cancers in India. This is mainly because India suffers from high usage of tobacco, which is one of the main causative agents of oral cancer, and lacks proper health and sexual hygiene in rural areas. DISCUSSION Non-coding RNAs are reported to be involved in the various mechanism and causality of cancer. Numerous reports have identified viable prospects connecting non-coding RNA (ncRNA) with cancer. Specific ncRNAs like long non-coding RNA or lncRNAs are recently being prioritized as potential associations in the cause of cancer. CONCLUSION This review aims at presenting a concise perspective on the basics and the recent advancements of the lncRNA research pertaining specifically to oral cancer, its recurrence, and the future possibilities of knowledge it might possess.
Collapse
|
5
|
Joshi J, Patel H, Bhavnagari H, Tarapara B, Pandit A, Shah F. Eliminating Cancer Stem-Like Cells in Oral Cancer by Targeting Elementary Signaling Pathways. Crit Rev Oncog 2022; 27:65-82. [PMID: 37199303 DOI: 10.1615/critrevoncog.2022047207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral cancer is a heterogeneous, aggressive, and complex entity. Current major treatment options for the disease are surgery, chemo, and/or radiotherapy either alone or in combination with each other. Each treatment method has its own limitations such as a significant journey with deformities and a protracted rehabilitation process leading to loss of self-esteem, loss of tolerance, and therapeutic side effects. Conventional therapies are frequently experienced with regimen resistance and recurrence attributed to the cancer stem cells (CSCs). Given that CSCs exert their tumorigenesis by affecting several cellular and molecular targets and pathways an improved understanding of CSCs' actions is required. Hence, more research is recommended to fully understand the fundamental mechanisms driving CSC-mediated treatment resistance. Despite the difficulties and disagreements surrounding the removal of CSCs from solid tumors, a great amount of knowledge has been derived from the characterization of CSCs. Various efforts have been made to identify the CSCs using several cell surface markers. In the current review, we will discuss numerous cell surface markers such as CD44, ALDH1, EPCAM, CD24, CD133, CD271, CD90, and Cripto-1 for identifying and isolating CSCs from primary oral squamous cell carcinoma (OSCC). Further, a spectrum of embryonic signaling pathways has been thought to be the main culprit of CSCs' active state in cancers, resulting in conventional therapeutic resistance. Hence, we discuss the functional and molecular bases of several signaling pathways such as the Wnt/beta;-catenin, Notch, Hedgehog, and Hippo pathways and their associations with disease aggressiveness. Moreover, numerous inhibitors targeting the above mentioned signaling pathways have already been identified and some of them are already undergoing clinical trials. Hence, the present review encapsulates the characterization and effectiveness of the prospective potential targeted therapies for eradicating CSCs in oral cancers.
Collapse
Affiliation(s)
- Jigna Joshi
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hitarth Patel
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Bhoomi Tarapara
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Pandit
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Jin X, Huang T, Ma C, Duan J, Li R, Zhang W, Tian W. Protein tyrosine kinase 7-knockdown inhibits oral squamous cell carcinoma cell viability, proliferation, migration and invasion via downregulating dishevelled segment polarity protein 3 expression. Exp Ther Med 2021; 22:1372. [PMID: 34659518 PMCID: PMC8515512 DOI: 10.3892/etm.2021.10806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinase 7 (PTK7) expression has been reported to be dysregulated and to regulate various cellular activities in numerous types of cancer. However, to the best of our knowledge, the status and role of PTK7 in oral squamous cell carcinoma (OSCC) remains largely unknown. The present study aimed to investigate the involvement of PTK7 in OSCC progression and to determine the potential underlying mechanisms of action. The expression levels of PTK7 and dishevelled segment polarity protein 3 (DVL3) in OSCC cell lines were analyzed using reverse transcription-quantitative PCR and western blotting. A co-immunoprecipitation assay was used to verify the binding association between PTK7 and DVL3. In addition, OSCC cells were transfected with a short hairpin RNA targeting PTK7 or pcDNA-DVL3 overexpression vectors. The effect of PTK7 on OSCC cell viability, proliferation, migration and invasion, and the underlying mechanisms, were investigated using Cell Counting Kit-8, colony formation, wound healing and Transwell assays, respectively. Western blotting was used to analyze the expression levels of proliferation- and migration-associated proteins. The results revealed that the expression levels of both PTK7 and DVL3 were significantly upregulated in OSCC cell lines. In addition, a binding association was identified between PTK7 and DVL3 in SCC-9 cells. The knockdown of PTK7 expression inhibited OSCC cell viability, proliferation, invasion and migration, while the overexpression of DVL3 reversed the inhibitory effects of PTK7-knockdown on OSCC cells. In conclusion, the results of the present study suggested that PTK7 may be a key regulator of OSCC proliferation, migration and invasion, and PTK7-knockdown may inhibit OSCC cell viability, proliferation, invasion and migration by downregulating DVL3 expression. Therefore, PTK7 and DVL3 may represent potential biomarkers for diagnosis and treatment, as well as promising drug targets for OSCC.
Collapse
Affiliation(s)
- Xiaoye Jin
- Department of Stomatology, The Second Hospital of Yulin City, Xi'an Jiaotong University Medical School, Yulin, Shaanxi 719000, P.R. China
| | - Tao Huang
- Disinfection Supply Center, The Second Hospital of Yulin City, Xi'an Jiaotong University Medical School, Yulin, Shaanxi 719000, P.R. China
| | - Caihong Ma
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu 730050, P.R. China
| | - Jiafeng Duan
- Department of Head and Neck Cancer Surgery, Stomatological Hospital affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rong Li
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu 730050, P.R. China
| | - Wei Zhang
- Department of Pharmacy, Yulin First Hospital of Shaanxi Province, Yulin, Shaanxi 719000, P.R. China
| | - Wenyan Tian
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
7
|
Ubiquitination and Deubiquitination in Oral Disease. Int J Mol Sci 2021; 22:ijms22115488. [PMID: 34070986 PMCID: PMC8197098 DOI: 10.3390/ijms22115488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
Oral health is an integral part of the general health and well-being of individuals. The presence of oral disease is potentially indicative of a number of systemic diseases and may contribute to their early diagnosis and treatment. The ubiquitin (Ub) system has been shown to play a role in cellular immune response, cellular development, and programmed cell death. Ubiquitination is a post-translational modification that occurs in eukaryotes. Its mechanism involves a number of factors, including Ub-activating enzymes, Ub-conjugating enzymes, and Ub protein ligases. Deubiquitinating enzymes, which are proteases that reversely modify proteins by removing Ub or Ub-like molecules or remodeling Ub chains on target proteins, have recently been regarded as crucial regulators of ubiquitination-mediated degradation and are known to significantly affect cellular pathways, a number of biological processes, DNA damage response, and DNA repair pathways. Research has increasingly shown evidence of the relationship between ubiquitination, deubiquitination, and oral disease. This review investigates recent progress in discoveries in diseased oral sites and discusses the roles of ubiquitination and deubiquitination in oral disease.
Collapse
|
8
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
9
|
Patel KD, Vora HH, Patel PS. Transcriptional Biomarkers in Oral Cancer: An Integrative Analysis and the Cancer Genome Atlas Validation. Asian Pac J Cancer Prev 2021; 22:371-380. [PMID: 33639650 PMCID: PMC8190349 DOI: 10.31557/apjcp.2021.22.2.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE An impervious mortality rate in oral cancer (OC) to a certain extent explains the exigencies of precise biomarkers. Therefore, the study was intended to identify OC candidate biomarkers using samples of healthy normal tissues (N=335), adjacent normal tissues (N=93) and OC tissues (N=533) from online microarray data. METHODS Differentially expressed genes (DEGs) were recognised through GeneSpring software (Fold change >4.0 and 'p' value.
Collapse
Affiliation(s)
| | | | - Prabhudas S Patel
- The Gujarat Cancer & Research Institute, Civil Hospital Campus, Asarwa, Ahmedabad-380 016, Gujarat, India.
| |
Collapse
|
10
|
Núñez-Acurio D, Bravo D, Aguayo F. Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020; 9:E1059. [PMID: 33352891 PMCID: PMC7765927 DOI: 10.3390/pathogens9121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Its development has been associated with diverse factors such as tobacco smoking and alcohol consumption. In addition, it has been suggested that microorganisms are risk factors for oral carcinogenesis. Epstein-Barr virus (EBV), which establishes lifelong persistent infections and is intermittently shed in the saliva, has been associated with several lymphomas and carcinomas that arise in the oral cavity. In particular, it has been detected in a subset of OSCCs. Moreover, its presence in patients with periodontitis has also been described. Porphyromonas gingivalis (P. gingivalis) is an oral bacterium in the development of periodontal diseases. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues but also to evade the host immune system and eventually affect systemic health. Persistent exposure to P. gingivalis promotes tumorigenic properties of oral epithelial cells, suggesting that chronic P. gingivalis infection is a potential risk factor for OSCC. Given that the oral cavity serves as the main site where EBV and P. gingivalis are harbored, and because of their oncogenic potential, we review here the current information about the participation of these microorganisms in oral carcinogenesis, describe the mechanisms by which EBV and P. gingivalis independently or synergistically can collaborate, and propose a model of interaction between both microorganisms.
Collapse
Affiliation(s)
- Daniela Núñez-Acurio
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
| | - Denisse Bravo
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisco Aguayo
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
11
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
12
|
He K, Zhu ZB, Shu R, Hong A. LncRNA NEAT1 mediates progression of oral squamous cell carcinoma via VEGF-A and Notch signaling pathway. World J Surg Oncol 2020; 18:261. [PMID: 33023572 PMCID: PMC7542398 DOI: 10.1186/s12957-020-02028-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND lncRNAs and VEGF have been shown to have close connections with oral squamous cell carcinoma (OSCC). We explored the interaction between lncRNA NEAT1 and VEGF-A in OSCC. METHODS RT-qPCR was implemented to measure levels of lncRNA NEAT1 and VEGF-A in OSCC cell lines and normal cell lines. Cell functions then were checked after regulating the expressions of lncRNA NEAT1 and VEGF-A separately. Cell viabilities were examined with CCK-8 and apoptosis rate was checked with flow cytometry. Meanwhile, EMT-related genes E-cadherin, N-cadherin, Vimentin, and Snail and Notch signaling genes Notch1, Notch2, and Jagged were evaluated by RT-qPCR. IMR-1 was applied for impeding Notch signaling pathway. Later, cell viabilities, apoptosis, and EMT were assessed. RESULTS Expressions of lncRNA NEAT1 and VEGF-A were both increased significantly in OSCC cell lines especially in TSCC1 cell line. Suppression of lncNRA NEAT1 was associated with lower cell viabilities and EMT and higher apoptosis rate in the TSCC1 cell line. Meanwhile, knockdown of VEGF-A significantly repressed cell viabilities and EMT in the TSCC1 cell line. Magnifying functions of inhibited lncRNA NEAT1 Notch signaling pathway was obviously activated with overexpressions of lncRNA NEAT1 and VEGF-A. Adding IMR-1 significantly downregulated cell viabilities and EMT and sharply increased apoptosis in the context of lncRNA NEAT1 and VEGF-A overexpression. CONCLUSION LncRNA NEAT1 may upregulate proliferation and EMT and repress apoptosis through activating VEGF-A and Notch signaling pathway in vitro, suggesting an underlying regulatory factor in OSCC. Nevertheless, further research is necessary to gain a greater understanding of lncRNA NEAT1 and connections with VEGF-A in vivo and in clinical study.
Collapse
Affiliation(s)
- Ke He
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, 610015, China
| | - Zhi-Bin Zhu
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, 610015, China
| | - Rui Shu
- Department of Orthodontics and Pediatric Dentistry, West China School of Stomatology State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.
| | - Ai Hong
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| |
Collapse
|
13
|
Hatano K, Saigo C, Kito Y, Shibata T, Takeuchi T. Overexpression of JAG2 is related to poor outcomes in oral squamous cell carcinoma. Clin Exp Dent Res 2020; 6:174-180. [PMID: 32250571 PMCID: PMC7133735 DOI: 10.1002/cre2.267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES JAG2 is one of Notch ligands, which recently appear to exert various carcinogenesis. In the present study, we aimed to unveil the relation of JAG2 expression and clinicopathological features in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS We examined JAG2 expression in OSCC plus adjacent nontumorous epithelia in eight patients. Ninety-one OSCC tissue specimens were immunohistochemically stained with specific antibodies to JAG2. The immunoreactivities of JAG2 were correlated with clinicopathological factors, including the prognosis of patients. Chi-square test, Kaplan-Meier survival, and Cox proportional hazard analysis were used to determine the statistical value of JAG2 expression in OSCC. RESULTS JAG2 mRNA expression was much expressed in OSCC tissues compared with adjacent tissue specimens in five of eight patients. JAG2 immunoreactivity was found at invasion front in 31 of 91 OSCC. JAG2 immunoreactivity was significantly associated with age, less than 50 years old of patients (P = .048). Kaplan-Meier analysis demonstrated that the patients with JAG2 immunoreactvty have a short overall survival. With the Cox proportional hazard regression mode, the independent factors predictive of poor overall survival included JAG2 immunoreactivity (P < .05). CONCLUSIONS The present findings suggest that JAG2 overexpression, especially at the cancer invasion front, has potential prognostic value.
Collapse
Affiliation(s)
- Kiichi Hatano
- Department of Oral and Maxillofacial SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Chiemi Saigo
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
| | - Yusuke Kito
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
| |
Collapse
|
14
|
Hsu PJ, Yan K, Shi H, Izumchenko E, Agrawal N. Molecular biology of oral cavity squamous cell carcinoma. Oral Oncol 2020; 102:104552. [PMID: 31918173 DOI: 10.1016/j.oraloncology.2019.104552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Oral cavity squamous cell carcinoma (OCSCC) is a heterogeneous and complex disease that arises due to dysfunction of multiple molecular signaling pathways. Recent advances in high-throughput genetic sequencing technologies coupled with innovative analytical techniques have begun to characterize the molecular determinants driving OCSCC. An understanding of the key molecular signaling networks underlying the initiation and progression of is essential for informing treatment of the disease. In this chapter, we discuss recent findings of key genes altered in OCSCC and potential treatments targeting these genes.
Collapse
Affiliation(s)
- Phillip J Hsu
- Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Kenneth Yan
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Evgeny Izumchenko
- Section of Hematology Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Molecular prognosticators in clinically and pathologically distinct cohorts of head and neck squamous cell carcinoma-A meta-analysis approach. PLoS One 2019; 14:e0218989. [PMID: 31310629 PMCID: PMC6634788 DOI: 10.1371/journal.pone.0218989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) includes multiple subsites that exhibit differential treatment outcome, which is in turn reflective of tumor stage/histopathology and molecular profile. This study hypothesized that the molecular profile is an accurate prognostic adjunct in patients triaged based on clinico-pathological characteristics. Towards this effect, publically available micro-array datasets (n = 8), were downloaded, classified based on HPV association (n = 83) and site (tongue n = 88; laryngopharynx n = 53; oropharynx n = 51) and re-analyzed (Genespring; v13.1). The significant genes were validated in respective cohorts in The Cancer Genome Atlas (TCGA) for correlation with clinico-pathological parameters/survival. The gene entities (n = 3258) identified from HPV based analysis, when validated in TCGA identified the subset specifically altered in HPV+ HNSCC (n = 63), with three genes showing survival impact (RPP25, NUDCD2, NOVA1). Site-specific meta-analysis identified respective differentials (tongue: 3508, laryngopharynx: 4893, oropharynx: 2386); validation in TCGA revealed markers with high incidence (altered in >10% of patients) in tongue (n = 331), laryngopharynx (n = 701) and oropharynx (n = 404). Assessment of these genes in clinical sub-cohorts of TCGA indicated that early stage tongue (MTFR1, C8ORF33, OTUD6B) and laryngeal cancers (TWISTNB, KLHL13 and UBE2Q1) were defined by distinct prognosticators. Similarly, correlation with perineural/angiolymophatic invasion, identified discrete marker panels with survival impact (tongue: NUDCD1, PRKC1; laryngopharynx: SLC4A1AP, PIK3CA, AP2M1). Alterations in ANO1, NUDCD1, PIK3CA defined survival in tongue cancer patients with nodal metastasis (node+ECS-), while EPS8 is a significant differential in node+ECS- laryngopharyngeal cancers. In oropharynx, wherein HPV is a major etiological factor, distinct prognosticators were identified in HPV+ (ECHDC2, HERC5, GGT6) and HPV- (GRB10, EMILIN1, FNDC1). Meta-analysis in combination with TCGA validation carried out in this study emphasized on the molecular heterogeneity inherent within HNSCC; the feasibility of leveraging this information for improving prognostic efficacy is also established. Subject to large scale clinical validation, the marker panel identified in this study can prove to be valuable prognostic adjuncts.
Collapse
|
16
|
Zhang J, Zheng G, Zhou L, Li P, Yun M, Shi Q, Wang T, Wu X. Notch signalling induces epithelial‑mesenchymal transition to promote metastasis in oral squamous cell carcinoma. Int J Mol Med 2018; 42:2276-2284. [PMID: 30015856 DOI: 10.3892/ijmm.2018.3769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The activation of Notch signalling induces epithelial‑mesenchymal transition (EMT), but this signalling pathway and its association with EMT in the context of cell motility in oral squamous cell carcinoma (OSCC) remains unclear. The present study aimed to investigate the role of the Notch signalling pathway and EMT in the metastatic potential of OSCC using 2 cell lines, Tca8113 and CAL27. The data demonstrated that zinc finger domain SNAI1 (Snail) knockdown by small interfering RNA decreased the expression of vimentin and increased the expression of epithelial cadherin (E‑cadherin). In addition, silencing Snail also significantly inhibited cell migration in the 2 OSCC cell lines. It was also identified that blocking Notch signalling with the g‑secretase inhibitor DAPT decreased the expression of the EMT markers Snail and vimentin and increased E‑cadherin expression, accompanied by a significant inhibition of cell migration in the 2 OSCC cell lines. These data clearly indicate that Notch signalling mediates EMT to promote metastasis in OSCC cells. Therefore, targeting Notch signalling and its association with EMT may provide novel insights into the mechanism of invasion and metastasis in OSCC and potential therapeutic interventions.
Collapse
Affiliation(s)
- Jianping Zhang
- School of Clinical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Genjian Zheng
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Lan Zhou
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Pengcheng Li
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Man Yun
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Qi Shi
- School of Clinical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Tingli Wang
- School of Clinical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Xiaotong Wu
- School of Clinical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
17
|
Hanna GJ, Kofman ER, Shazib MA, Woo SB, Reardon B, Treister NS, Haddad RI, Cutler CS, Antin JH, Van Allen EM, Uppaluri R, Soiffer RJ. Integrated genomic characterization of oral carcinomas in post-hematopoietic stem cell transplantation survivors. Oral Oncol 2018; 81:1-9. [DOI: 10.1016/j.oraloncology.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/15/2018] [Accepted: 04/07/2018] [Indexed: 02/07/2023]
|
18
|
Loss of nuclear NOTCH1, but not its negative regulator NUMB, is an independent predictor of cervical malignancy. Oncotarget 2018; 9:18916-18928. [PMID: 29721172 PMCID: PMC5922366 DOI: 10.18632/oncotarget.24828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/24/2018] [Indexed: 12/29/2022] Open
Abstract
The participation of NOTCH signaling in invasive cervical cancer (ICC) remains controversial since both tumor suppressive and oncogenic properties have been described. Additionally, the role of NUMB, a negative regulator of NOTCH, remains unclear in ICC. We aimed to investigate the role of NOTCH1 and NUMB expression and their localization in cervical intraepithelial neoplasia (CIN) and ICC samples. A total of 144 biopsies were obtained from the Instituto Nacional de Cancerología, México from 2004 to 2017, and were subjected to immunohistochemistry for NOTCH1 and NUMB. We found that nuclear NOTCH1 expression was more frequently found in CIN samples compared with ICC (77.55% vs. 15.79%, p = 0.001). NUMB was almost exclusively found in the nucleus of CIN samples (32.65% vs. 6.32%, p = 0.001). Cytoplasmic expression of NOTCH1 (44.21%) and NUMB (35.79%) was the most frequent localization in ICC. Multivariable-adjusted analysis showed that the loss of nuclear NOTCH1 expression was an independent predictor of malignancy (β = -3.428, 95% confidence interval [95% CI] = -5.127, -1.728, p = 0.001). In contrast, the association between cytoplasmic NUMB expression and cervical cancer was lost after adjusting for nuclear NOTCH1 expression (β = 2.074, 95% [CI] = -0.358, 4.506, P = 0.094). Additionally, patients with cytoplasmic NOTCH1 expression showed a borderline association with longer overall survival (OS) than those with nuclear NOTCH1 expression (P = 0.08). Our data suggest that the loss of nuclear NOTCH1 but not NUMB might be an independent predictor of malignancy in cervical cancer.
Collapse
|
19
|
Suwanwela J, Osathanon T. Inflammation related genes are upregulated in surgical margins of advanced stage oral squamous cell carcinoma. J Oral Biol Craniofac Res 2017; 7:193-197. [PMID: 29123999 DOI: 10.1016/j.jobcr.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Aims Advanced stage of oral squamous cell carcinoma (OSCC) exhibits different properties compared with the early stage for example an invasion ability. The present study investigated a differential gene expression of surgical margin between advanced and early stage of OSCC. Methods Gene Expression Omnibus dataset (GSE31056) was downloaded and re-analyzed. Surgical margin samples were categorized into 2 groups; early stage and late stage. Differential gene expression analysis was performed. Dysregulated genes were further analyzed for gene ontology, enriched pathway, and disease association using a network-based analysis tools. Results Eighty-five dysregulated genes were identified in margin of late stage OSCC. Metabolic process and biological regulation were the main gene ontology of dysregulated genes. Genes involved in Jak-STAT signaling pathway were upregulated in late stage of surgical margin samples. In addition, seven upregulated genes in late stage group, namely CEBPB, S1PR1, IL6, CEBPD, CHI3L1, PTX3, and SOCS3, were categorized in acute phase reaction and inflammation categories of disease association analysis. Conclusion The differential expressed genes in surgical margin of late stage OSCC could be further employed to understand cancer's behavior and to identify target pathway to prevent OSCC invasion.
Collapse
Affiliation(s)
- Jaijam Suwanwela
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.,Craniofacial Genetics and Stem Cell Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Al-Dewik NI, Qoronfleh MW. Novel Developments in the Molecular Genetic Basis of Oral Squamous Cell Carcinoma (OSCC). DEVELOPMENT OF ORAL CANCER 2017:23-37. [DOI: 10.1007/978-3-319-48054-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|