1
|
Siwak M, Piotrzkowska D, Skrzypek M, Majsterek I. Effects of PEMF and LIPUS Therapy on the Expression of Genes Related to Peripheral Nerve Regeneration in Schwann Cells. Int J Mol Sci 2024; 25:12791. [PMID: 39684499 DOI: 10.3390/ijms252312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Peripheral nerve regeneration remains a major challenge in neuroscience, despite advancements in understanding its mechanisms. Current treatments, including nerve transplantation and drug therapies, face limitations such as invasiveness and incomplete recovery of nerve function. Physical therapies, like pulsed electromagnetic fields (PEMF) and low-intensity ultrasound (LIPUS), are gaining attention for their potential to enhance regeneration. This study analyzes the effects of PEMF and LIPUS on gene expression in human primary Schwann cells, which are crucial for nerve myelination and repair. Key genes involved in neurotrophin signaling (NGF, BDNF), inflammation (IL-1β, IL-6, IL-10, TNF-α, TGF-β), and regeneration (CRYAB, CSPG, Ki67) were assessed. The results of this study reveal that combined PEMF and LIPUS therapies promote Schwann cell proliferation, reduce inflammation, and improve the regenerative environment, offering potential for optimizing these therapies for clinical use in regenerative medicine.
Collapse
Affiliation(s)
- Mateusz Siwak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Danuta Piotrzkowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
2
|
Li F, Li Y, Zhu Y, Bao X, Wang L. Recent Advances in Basic Studies of Low-Intensity Pulsed Ultrasound in Periodontal Tissue Regeneration: A Systematic Review. Stem Cell Rev Rep 2024; 20:2124-2137. [PMID: 39134887 DOI: 10.1007/s12015-024-10769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 11/12/2024]
Abstract
Approximately half of the adult population is suffering from periodontal disease, and conventional periodontal treatment strategies can only slow the progression of the disease. As a kind of tissue engineering, periodontal regeneration brings hope for the treatment of periodontal disease. Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound with a frequency of 1-3 MHz and a much lower intensity (< 1W/cm2) than traditional ultrasound energy and output. LIPUS has been adopted for a variety of therapeutic purposes due to its bioeffects such as thermal, mechanical, and cavitation effects, which induce intracellular biochemical effects and lead to tissue repair and regeneration ultimately. In this systematic review, we summarize the basic research of LIPUS in the treatment of periodontal disease in periodontal disease animal models and the influence of LIPUS on the biological behavior (including promoting osteogenic differentiation of stem cells and inhibiting inflammatory response) and potential mechanism of periodontal ligament stem cells (PDLSCs), hoping to provide new ideas for the treatment of periodontal disease. We believe that LIPUS can be used as an auxiliary strategy in the treatment of periodontal disease and play an exciting and positive role in periodontal regeneration.
Collapse
Affiliation(s)
- Facai Li
- Department of Operation Room, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yujiao Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuan Zhu
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaomei Bao
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lei Wang
- Department of Cardiac Surgery, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
3
|
Ding C, Shen Z, Xu R, Liu Y, Xu M, Fan C, Hu D, Xing T. Exosomes derived from periodontitis induce hepatic steatosis through the SCD-1/AMPK signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167343. [PMID: 38986822 DOI: 10.1016/j.bbadis.2024.167343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
AIM To investigate the impact of exosomes released by Porphyromonas gingivalis-Lipopolysaccharide activated THP-1 macrophages and human periodontal ligament fibroblasts on hepatocyte fat metabolism. RESULTS The liver of rats with experimental periodontitis showed obvious steatosis and inflammation compared with control rats. The culture supernatant of macrophages and human periodontal ligament fibroblasts (hPDLFs), when stimulated with Pg-LPS, induced lipogenesis in HepG2 cells. Furthermore, the lipid-promoting effect was effectively inhibited by the addition of the exosome inhibitor GW4869. Subsequently, we isolated exosomes from cells associated with periodontitis. Exosomes released by Pg-LPS-stimulated macrophages and hPDLFs are taken up by hepatocytes, causing mRNA expression related to fat synthesis, promoting triglyceride synthesis, and aggravating NAFLD progression. Finally, two sets of exosomes were injected into mice through the tail vein. In vivo experiments have also demonstrated that periodontitis-associated exosomes promote the development of hepatic injury and steatosis, upregulate SCD-1 expression and inhibit the AMPK signaling pathway. CONCLUSIONS In conclusion, we found that exosomes associated with periodontitis promote hepatocyte adipogenesis by increasing the expression of SCD-1 and suppressing the AMPK pathway, which indicates that close monitoring of the progression of stomatopathy associated extra-oral disorders is important and establishes a theoretical foundation for the prevention and management of fatty liver disease linked to periodontitis.
Collapse
Affiliation(s)
- Chunmeng Ding
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Zhenguo Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Ruonan Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yajing Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Mengyue Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Chenyu Fan
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Dongyue Hu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| |
Collapse
|
4
|
Lin X, Peng N, Huang P, Xiong Q, Lin H, Tang C, Tsauo C, Peng L. Potential of quaternized chitins in peri-implantitis treatment: In vitro evaluation of antibacterial, anti-inflammatory, and antioxidant properties. Int J Biol Macromol 2024; 272:132612. [PMID: 38795897 DOI: 10.1016/j.ijbiomac.2024.132612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Xiqiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Peijun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huishan Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chialing Tsauo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Luo L, Cao H, Zhou L, Zhang G, Wu L. Anti-resorption role of low-intensity pulsed ultrasound (LIPUS) during large-scale bone reconstruction using porous titanium alloy scaffolds through inhibiting osteoclast differentiation. BIOMATERIALS ADVANCES 2023; 154:213634. [PMID: 37783002 DOI: 10.1016/j.bioadv.2023.213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Ti6Al4V biomaterials combine with low-intensity pulsed ultrasound (LIPUS) has been reported with great bone regeneration capacity. It is important to better understand how LIPUS benefits bone microenvironment to seek for target of therapeutic medicine. Osteoclast differentiation plays a crucial role in bone resorption. Recent advances in molecular biology have revealed that N6-methyladenosine (m6A) RNA modifications can modulate biological processes, but their role in bone biology, particularly in osteoclast differentiation, remains unclear. We aim to understand how LIPUS regulates bone microenvironment especially osteoclast formation during bone regeneration to provide new therapeutic options for preventing and delaying bone resorption, thus with better bone regeneration efficiency. RESULTS 1. LIPUS promoted bone ingrowth and bone maturity while inhibiting osteoclast formation within Ti6Al4V scaffolds in large-scale bone defect model. 2. LIPUS was found to inhibit osteoclast differentiation by decreasing the overall expression of osteoclast markers in vitro. 3. LIPUS decreases RNA m6A-modification level through upregulating FTO expression during osteoclast differentiation during. 4. Inhibiting FTO expression and function leads to less inhibition during osteoclast differentiation. CONCLUSION LIPUS suppresses osteoclast differentiation during bone regeneration through reducing m6A modification of osteoclastic RNAs by up regulating FTO expression.
Collapse
Affiliation(s)
- Lin Luo
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Hongjuan Cao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Liang Zhou
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Guangdao Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China.
| | - Lin Wu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China.
| |
Collapse
|
6
|
Wang Y, Li X, Liu Y, Wang J, Huang X. Effect of MC3T3 cell density on osteoclastic differentiation of mouse bone marrow cells. Tissue Cell 2022; 75:101724. [DOI: 10.1016/j.tice.2021.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
|
7
|
Zheng Y, Chai L, Fan Y, Song YQ, Zee KY, Tu WW, Jin L, Leung WK. Th2 cell regulatory and effector molecules single nucleotide polymorphisms and periodontitis. J Leukoc Biol 2020; 108:1641-1654. [PMID: 32745291 DOI: 10.1002/jlb.4ma0720-698rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 11/07/2022] Open
Abstract
To investigate the association between T helper 2 (Th2) cell regulatory and effector molecules' genetic polymorphisms and periodontitis. Single nucleotide polymorphisms (SNPs) of 11 Th2 cell regulatory or effector molecules genes (CD28, CTLA4, IL4, IL5, IL6, IL9, IL10, IL13, IL4R, GATA3, STAT6, and rs1537415; total 130 SNPs) were studied in Chinese nonsmokers (163 periodontitis-free controls, 141 periodontitis patients) using Sequenom iPlex assays. SNPs potentially associated with periodontitis (adjusted allelic P < 0.1) in this cross-sectional study were further investigated via meta-analysis. Allele G of rs4553808 in promoter of CTLA4 was more frequently detected in periodontitis than controls (P < 0.005), but did not remain significant after age and gender adjustment. Haplotype (GTT) in a block of three CTLA4 SNPs (rs4553808, rs16840252, rs5742909) was significantly associated with periodontitis. Meta-analysis of SNPs identified indicated allele T of CTLA4 rs5742909 (3 studies; 461 control, 369 periodontitis) and allele G of IL6 rs1800796 (18 studies; 2760 control, 2442 periodontitis) were significantly associated with periodontitis (OR = 1.44 and OR = 1.30, respectively). Within limitations of this study, a haplotype of CTLA4 concerning Th2 cell regulation, may be associated with periodontitis in Chinese nonsmokers followed. Meta-analysis indicated rs5742909 of CTLA4 and rs1800796 of IL6 appeared significantly associated with periodontitis.
Collapse
Affiliation(s)
- Ying Zheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Chai
- Rytime Dental Hospital, Chengdu, Sichuan, China
| | - Yanhui Fan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Current address: Phil Rivers Technology, Nanshan District, Haitian Second Road, Shenzhen, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kwan-Yat Zee
- Thornleigh Periodontal Clinic, Thornleigh, New South Wales, Australia
| | - Wen Wei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Hellman A, Maietta T, Byraju K, Linda Park Y, Shao M, Liss A, Neubauer P, Burdette C, Ghoshal G, Qian J, Nalwalk J, Pilitsis JG. Low Intensity Focused Ultrasound Modulation of Vincristine Induced Neuropathy. Neuroscience 2020; 430:82-93. [DOI: 10.1016/j.neuroscience.2020.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023]
|
9
|
Shirakata Y, Imafuji T, Sena K, Shinohara Y, Nakamura T, Noguchi K. Periodontal tissue regeneration after low-intensity pulsed ultrasound stimulation with or without intra-marrow perforation in two-wall intra-bony defects-A pilot study in dogs. J Clin Periodontol 2019; 47:54-63. [PMID: 31518439 DOI: 10.1111/jcpe.13197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Accepted: 09/09/2019] [Indexed: 01/14/2023]
Abstract
AIM To evaluate the effects of low-intensity pulsed ultrasound (LIPUS) with/without intra-marrow perforation (IMP) on periodontal healing in two-wall intra-bony defects in dogs. MATERIALS AND METHODS Two-wall intra-bony defects (5 mm wide, 5 mm deep) were created at the distal and mesial aspects of mandibular premolars in four beagle dogs (four defects per dog). The 16 defects were divided into four treatment groups: IMP, LIPUS, IMP + LIPUS (IMP/LIPUS) and control (open flap debridement). The LIPUS and IMP/LIPUS sites received daily LIPUS exposure for 3 weeks starting 1 week after surgery. The animals were euthanized 4 weeks after surgery for histologic evaluation. RESULTS There was significantly greater new bone formation at LIPUS (2.93 ± 0.74 mm) and IMP/LIPUS (3.18 ± 0.52 mm) sites than at control sites (1.65 ± 0.46 mm). New bone area at LIPUS (6.36 ± 2.28 mm2 ) and IMP/LIPUS (6.13 ± 1.25 mm2 ) sites was significantly greater than that at control sites (2.15 ± 1.75 mm2 ). New cementum length at LIPUS sites (4.09 ± 0.75 mm) was significantly greater than that at control (2.29 ± 1.02 mm) and IMP (2.41 ± 0.41 mm) sites. No significant difference was observed between LIPUS and IMP/LIPUS sites in any histomorphometric parameter. CONCLUSIONS These findings suggest that LIPUS effectively promotes periodontal regeneration in two-wall intra-bony defects in dogs.
Collapse
Affiliation(s)
- Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takatomo Imafuji
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Sena
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yukiya Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
10
|
Anti-Inflammatory and Healing Effects of Pulsed Ultrasound Therapy on Fibroblasts. Am J Phys Med Rehabil 2019; 99:19-25. [DOI: 10.1097/phm.0000000000001265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Rudick CP, Lang MS, Miyamoto T. Understanding the pathophysiology behind chairside diagnostics and genetic testing for IL-1 and IL-6. Oral Dis 2019; 25:1879-1885. [PMID: 30614160 DOI: 10.1111/odi.13030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
In order for chairside diagnostic testing to make an impact on dental therapy, practitioners require a better understanding of genetic mutations contributing to the pathophysiology of periodontal disease. Commensal and pathogenic bacterial colonization in oral cavity tissues produces a cascade of proinflammatory signaling pathways ultimately detrimental to host tissues. Resolving inflammation is a multifactorial process involving the downregulation of proinflammatory cytokines while allowing commensal bacterial levels to return to normal. Because of the complicated nature of commensal bacteria and oral health homeostasis, the emphasis of dental therapy should place renewed focus on limiting destructive inflammation rather than solely eliminating bacteria. Salivary diagnostics are an easy, non-invasive way to assess inflammatory markers. Inflammatory cytokine levels can help determine the subclinical health of a patient, showing the transition from health to gingivitis, or periodontitis, prior to clinical presentation. Single nucleotide polymorphism mutations can aid in determining increased risk of developing periodontitis. Taken together, and alongside regular clinical evaluations, chairside diagnostics help individualize treatment plans to slow, or halt, the progression of disease-before tissue destruction can take place. While more studies are needed analyzing specific mutations across periodontal categories, chairside diagnostics present an exciting adjunct to improve patient care.
Collapse
Affiliation(s)
- Courtney P Rudick
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska
| | - Melissa S Lang
- Department of Periodontology, Creighton University School of Dentistry, Omaha, Nebraska.,Private Practice, La Vista, Nebraska
| | - Takanari Miyamoto
- Department of Periodontology, Creighton University School of Dentistry, Omaha, Nebraska.,Private Practice, La Vista, Nebraska
| |
Collapse
|
12
|
Zheng C, Wu SM, Lian H, Lin YZ, Zhuang R, Thapa S, Chen QZ, Chen YF, Lin JF. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways. J Cell Mol Med 2018; 23:1963-1975. [PMID: 30592150 PMCID: PMC6378187 DOI: 10.1111/jcmm.14098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
The aggressive immunological activity elicited by acute viral myocarditis contributes to a large amount of cardiomyocytes loss and poor prognosis of patients in clinic. Low-intensity pulsed ultrasound (LIPUS), which is an effective treatment modality for osteoarthropathy, has been recently illustrated regulating the overactive inflammatory response in various diseases. Here, we aimed to investigate whether LIPUS could attenuate coxsackievirus B3 (CVB3) infection-induced injury by coordinating the inflammatory response. Male BALB/c mice were inoculated intraperitoneally with CVB3 to establish the model of acute viral myocarditis. LIPUS treatment was given on Day 1, Day 1, 3 and Day 1, 3, 5 post-inoculation, respectively. All mice were followed up for 14 days. Day 1, 3, 5 LIPUS treatment significantly improved the survival rate, attenuated the ventricular dysfunction and ameliorated the cardiac histopathological injury of CVB3-infected mice. Western blotting analysis showed Day 1, 3, 5 LIPUS treatment decreased pro-inflammatory cytokines, increased the activation of caveolin-1 and suppressed p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) signallings in heart tissue. RAW264.7 cells were treated with lipopolysaccharides (LPS) to simulate the augmented inflammatory response in vivo. LIPUS treatment on RAW264.7 inhibited the expression of pro-inflammatory cytokines, activated caveolin-1 and suppressed p38 MAPK and ERK signallings. Transfecting RAW264.7 with caveolin-1 siRNA blunted the suppression of pro-inflammatory cytokines and MAPK signallings by LIPUS treatment. Taken together, we demonstrated for the first time that LIPUS treatment attenuated the aggressive inflammatory response during acute viral myocarditis. The underlying mechanism may be activating caveolin-1 and suppressing MAPK signallings.
Collapse
Affiliation(s)
- Cheng Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sen-Min Wu
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Lian
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Zheng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Zhuang
- Department of Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saroj Thapa
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quan-Zhi Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Fan Chen
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, China
| | - Jia-Feng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Chiang PK, Yang FY. A potential treatment of low intensity pulsed ultrasound on cavernous nerve injury for erectile dysfunction. Med Hypotheses 2018; 122:19-21. [PMID: 30593410 DOI: 10.1016/j.mehy.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 01/28/2023]
Abstract
Erectile dysfunction after nerve injury is a common disease after radical prostatectomy. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which plays an important role in the survival of existing neurons, the differentiation of new neurons, and synaptic plasticity. It has been demonstrated that low-intensity pulsed ultrasound (LIPUS) accelerates bone healing and axonal regeneration after injury. LIPUS may also be able to stimulate neuronal activity and enhance the levels of neurotrophic factors. Evidence suggests that elevated levels of BDNF in the brain have protective effects against neurodegenerative diseases. Previous studies have shown that the treatment on cavernous nerve injury repair, and protective effect plus neuro-regeneration effect by low-intensity pulsed ultrasound. They shared the similar mechanism including several trophic factors stimulation, Pl3K/akt pathway activation, and anti-fibrosis mechanism. We hypothesized that due to its combined neuroregenerative and protective effects, the non-invasive and easy-to-use method of LIPUS stimulation could have a therapeutic effect on erectile dysfunction stemming from cavernous nerve injury.
Collapse
Affiliation(s)
- Pai-Kai Chiang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Departments of Urology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
14
|
N-acetyl cysteine inhibits lipopolysaccharide-mediated induction of interleukin-6 synthesis in MC3T3-E1 cells through the NF-kB signaling pathway. Arch Oral Biol 2018; 93:149-154. [DOI: 10.1016/j.archoralbio.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022]
|
15
|
Itaya N, Yabe Y, Hagiwara Y, Kanazawa K, Koide M, Sekiguchi T, Yoshida S, Sogi Y, Yano T, Tsuchiya M, Saijo Y, Itoi E. Effects of Low-Intensity Pulsed Ultrasound for Preventing Joint Stiffness in Immobilized Knee Model in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1244-1256. [PMID: 29573888 DOI: 10.1016/j.ultrasmedbio.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to examine the effect of low-intensity pulsed ultrasound (LIPUS) in preventing joint stiffness. Unilateral knee joints were immobilized in two groups of rats (n = 6/period/group). Under general anesthesia, the immobilized knee joints were exposed to LIPUS for 20 min/d, 5 d/wk, using an existing LIPUS device (LIPUS group, 1.5-MHz frequency, 1.0-kHz repetition cycle, 200-µs burst width and 30-mW/cm2 power output) until endpoints (2, 4 or 6 wk). In the control group, general anesthesia alone was administered in the same manner as in the other group. The variables compared between the groups included joint angles; histologic, histomorphometric and immunohistochemical analyses; quantitative reverse transcription polymerase chain reactions; and tissue elasticity. LIPUS had a preventive effect on joint stiffness, resulting in decreased adhesion, fibrosis and inflammation and hypoxic response after joint immobilization.
Collapse
Affiliation(s)
- Nobuyuki Itaya
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Yutake Yabe
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan.
| | - Kenji Kanazawa
- Department of Orthopaedic Surgery, Iwate Prefectural Central Hospital, Morioka, Iwate, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Matsuda Hospital, Izumi-ku, Sendai, Japan
| | - Takuya Sekiguchi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Shinichirou Yoshida
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Yasuhito Sogi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | - Toshihisa Yano
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| | | | - Yoshihumi Saijo
- Department of Biomedical Imaging, Tohoku University Graduate School of Biomedical Engineering, Aoba-ku, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan
| |
Collapse
|