1
|
Attenuation of Bone Formation through a Decrease in Osteoblasts in Mutant Mice Lacking the GM2/GD2 Synthase Gene. Int J Mol Sci 2022; 23:ijms23169044. [PMID: 36012308 PMCID: PMC9409452 DOI: 10.3390/ijms23169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The ganglioside GD1a has been reported to promote the differentiation of mesenchymal stem cells to osteoblasts in cell culture systems. However, the involvement of gangliosides, including GD1a, in bone formation in vivo remains unknown; therefore, we herein investigated their roles in GM2/GD2 synthase-knockout (GM2/GD2S KO) mice without GD1a. The femoral cancellous bone mass was analyzed using three-dimensional micro-computed tomography. A histomorphometric analysis of bone using hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase was performed to examine bone formation and resorption, respectively. Calcein double labeling was also conducted to evaluate bone formation. Although no significant differences were observed in bone mass or resorption between GM2/GD2S KO mice and wild-type (WT) mice, analyses of the parameters of bone formation using HE staining and calcein double labeling revealed less bone formation in GM2/GD2S KO mice than in WT mice. These results suggest that gangliosides play roles in bone formation.
Collapse
|
2
|
Hamamura K, Hamajima K, Yo S, Mishima Y, Furukawa K, Uchikawa M, Kondo Y, Mori H, Kondo H, Tanaka K, Miyazawa K, Goto S, Togari A. Deletion of Gb3 Synthase in Mice Resulted in the Attenuation of Bone Formation via Decrease in Osteoblasts. Int J Mol Sci 2019; 20:ijms20184619. [PMID: 31540393 PMCID: PMC6769804 DOI: 10.3390/ijms20184619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Glycosphingolipids are known to play a role in developing and maintaining the integrity of various organs and tissues. Among glycosphingolipids, there are several reports on the involvement of gangliosides in bone metabolism. However, there have been no reports on the presence or absence of expression of globo-series glycosphingolipids in osteoblasts and osteoclasts, and the involvement of their glycosphingolipids in bone metabolism. In the present study, we investigated the presence or absence of globo-series glycosphingolipids such as Gb3 (globotriaosylceramide), Gb4 (globoside), and Gb5 (galactosyl globoside) in osteoblasts and osteoclasts, and the effects of genetic deletion of Gb3 synthase, which initiates the synthesis of globo-series glycosphingolipids on bone metabolism. Among Gb3, Gb4, and Gb5, only Gb4 was expressed in osteoblasts. However, these glycosphingolipids were not expressed in pre-osteoclasts and osteoclasts. Three-dimensional micro-computed tomography (3D-μCT) analysis revealed that femoral cancellous bone mass in Gb3 synthase-knockout (Gb3S KO) mice was lower than that in wild type (WT) mice. Calcein double labeling also revealed that bone formation in Gb3S KO mice was significantly lower than that in WT mice. Consistent with these results, the deficiency of Gb3 synthase in mice decreased the number of osteoblasts on the bone surface, and suppressed mRNA levels of osteogenic differentiation markers. On the other hand, osteoclast numbers on the bone surface and mRNA levels of osteoclast differentiation markers in Gb3S KO mice did not differ from WT mice. This study demonstrated that deletion of Gb3 synthase in mice decreases bone mass via attenuation of bone formation.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Kosuke Hamajima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Shoyoku Yo
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Yoshitaka Mishima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi 487-8501, Japan.
| | - Makoto Uchikawa
- Japanese Red Cross Tokyo Blood Center, Tokyo 162-8639, Japan.
| | - Yuji Kondo
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 464-8650, Japan.
| | - Hironori Mori
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Kenjiro Tanaka
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
3
|
Deficiency of GD3 Synthase in Mice Resulting in the Attenuation of Bone Loss with Aging. Int J Mol Sci 2019; 20:ijms20112825. [PMID: 31185614 PMCID: PMC6600367 DOI: 10.3390/ijms20112825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Gangliosides are widely expressed in almost all tissues and cells and are also considered to be essential in the development and maintenance of various organs and tissues. However, little is known about their roles in bone metabolism. In this study, we investigated the effects of genetic deletion of ganglioside D3 (GD3) synthase, which is responsible for the generation of all b-series gangliosides, on bone metabolism. Although b-series gangliosides were not expressed in osteoblasts, these gangliosides were expressed in pre-osteoclasts. However, the expression of these gangliosides was decreased after induction of osteoclastogenesis by receptor activator of nuclear factor kappa-B ligand (RANKL). Three-dimensional micro-computed tomography (3D-μCT) analysis revealed that femoral cancellous bone mass in GD3 synthase-knockout (GD3S KO) mice was higher than that in wild type (WT) mice at the age of 40 weeks, although there were no differences in that between GD3S KO and WT mice at 15 weeks old. Whereas bone formation parameters (osteoblast numbers/bone surface and osteoblast surface/bone surface) in GD3S KO mice did not differ from WT mice, bone resorption parameters (osteoclast numbers/bone surface and osteoclast surface/bone surface) in GD3S KO mice became significantly lower than those in WT mice at 40 weeks of age. Collectively, this study demonstrates that deletion of GD3 synthase attenuates bone loss that emerges with aging.
Collapse
|