1
|
Liu Q, Liu Y, Yang Z. Leukocyte immunoglobulin-like receptor B4: A keystone in immune modulation and therapeutic target in cancer and beyond. CANCER INNOVATION 2024; 3:e153. [PMID: 39444949 PMCID: PMC11495969 DOI: 10.1002/cai2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024]
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) significantly impacts immune regulation and the pathogenesis and progression of various cancers. This review discusses LILRB4's structural attributes, expression patterns in immune cells, and molecular mechanisms in modulating immune responses. We describe the influence of LILRB4 on T cells, dendritic cells, NK cells, and macrophages, and its dual role in stimulating and suppressing immune activities. The review discusses the current research on LILRB4's involvement in acute myeloid leukemia, chronic lymphocytic leukemia, and solid tumors, such as colorectal cancer, pancreatic cancer, non-small cell lung cancer, hepatocellular carcinoma, and extramedullary multiple myeloma. The review also describes LILRB4's role in autoimmune disorders, infectious diseases, and other conditions. We evaluate the recent advancements in targeting LILRB4 using monoclonal antibodies and peptide inhibitors and their therapeutic potential in cancer treatment. Together, these studies underscore the need for further research on LILRB4's interactions in the tumor microenvironment and highlight its importance as a therapeutic target in oncology and for future clinical innovations.
Collapse
Affiliation(s)
- Qi Liu
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingYunnanChina
| | - Zhanyu Yang
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
2
|
Li M, Zhao X. LILRB4 in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024:00029330-990000000-01138. [PMID: 38973293 DOI: 10.1097/cm9.0000000000003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Leukocyte immunoglobulin-like receptor (LILR) B4 (also known as ILT3/CD85k) is an immune checkpoint protein that is highly expressed in solid tumors and hematological malignancies and plays a significant role in the pathophysiology of cancer. LILRB4 is highly expressed in acute myeloid leukemia (AML), and this phenotype is associated with adverse patient outcomes. Its differential expression in tumors compared to normal tissues, its presence in tumor stem cells, and its multifaceted roles in tumorigenesis position it as a promising therapeutic target in AML. Currently, several immunotherapies targeting LILRB4 are undergoing clinical trials. This review summarizes advancements made in the study of LILRB4 in AML, focusing on its structure, ligands, expression, and significance in normal tissues and AML; its protumorigenic effects and mechanisms in AML; and the application of LILRB4-targeted therapies in AML. These insights highlight the potential advantages of LILRB4 as an immunotherapeutic target in the context of AML.
Collapse
Affiliation(s)
- Muzi Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | | |
Collapse
|
3
|
Xiang Z, Yin X, Wei L, Peng M, Zhu Q, Lu X, Guo J, Zhang J, Li X, Zou Y. LILRB4 Checkpoint for Immunotherapy: Structure, Mechanism and Disease Targets. Biomolecules 2024; 14:187. [PMID: 38397424 PMCID: PMC10887124 DOI: 10.3390/biom14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
LILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions. Its ability to induce effector T cell dysfunction and promote T suppressor cell differentiation has been demonstrated, indicating the therapeutic potential of LILRB4 for modulating excessive immune responses, particularly in autoimmune diseases or the induction of transplant tolerance. Additionally, through intervening with LILRB4 molecules, immune system responsiveness can be adjusted, representing significant value in areas such as cancer treatment. Thus, LILRB4 has emerged as a key player in addressing autoimmune diseases, transplant tolerance induction, and other medical issues. In this review, we provide a comprehensive overview of LILRB4, encompassing its structure, expression, and ligand molecules as well as its role as a tolerance receptor. By exploring the involvement of LILRB4 in various diseases, its significance in disease progression is emphasized. Furthermore, we propose that the manipulation of LILRB4 represents a promising immunotherapeutic strategy and highlight its potential in disease prevention, treatment and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (Z.X.); (X.Y.); (L.W.); (M.P.); (Q.Z.); (X.L.); (J.G.); (J.Z.); (X.L.)
| |
Collapse
|
4
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Wagner LE, Melnyk O, Duffett BE, Linnemann AK. Mouse models and human islet transplantation sites for intravital imaging. Front Endocrinol (Lausanne) 2022; 13:992540. [PMID: 36277698 PMCID: PMC9579277 DOI: 10.3389/fendo.2022.992540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023] Open
Abstract
Human islet transplantations into rodent models are an essential tool to aid in the development and testing of islet and cellular-based therapies for diabetes prevention and treatment. Through the ability to evaluate human islets in an in vivo setting, these studies allow for experimental approaches to answer questions surrounding normal and disease pathophysiology that cannot be answered using other in vitro and in vivo techniques alone. Intravital microscopy enables imaging of tissues in living organisms with dynamic temporal resolution and can be employed to measure biological processes in transplanted human islets revealing how experimental variables can influence engraftment, and transplant survival and function. A key consideration in experimental design for transplant imaging is the surgical placement site, which is guided by the presence of vasculature to aid in functional engraftment of the islets and promote their survival. Here, we review transplantation sites and mouse models used to study beta cell biology in vivo using intravital microscopy and we highlight fundamental observations made possible using this methodology.
Collapse
Affiliation(s)
- Leslie E. Wagner
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olha Melnyk
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryce E. Duffett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amelia K. Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications. Nat Commun 2022; 13:946. [PMID: 35177642 PMCID: PMC8854716 DOI: 10.1038/s41467-022-28639-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19 complications still present a huge burden on healthcare systems and warrant predictive risk models to triage patients and inform early intervention. Here, we profile 893 plasma proteins from 50 severe and 50 mild-moderate COVID-19 patients, and 50 healthy controls, and show that 375 proteins are differentially expressed in the plasma of severe COVID-19 patients. These differentially expressed plasma proteins are implicated in the pathogenesis of COVID-19 and present targets for candidate drugs to prevent or treat severe complications. Based on the plasma proteomics and clinical lab tests, we also report a 12-plasma protein signature and a model of seven routine clinical tests that validate in an independent cohort as early risk predictors of COVID-19 severity and patient survival. The risk predictors and candidate drugs described in our study can be used and developed for personalized management of SARS-CoV-2 infected patients. Prognostic markers for patients with COVID-19 are of critical importance in determining the course of SARS-CoV-2 infection and patient handling. Here the authors determine and apply a prognostic proteomic panel for risk and drug prediction in the management of SARS-CoV-2 infected patients.
Collapse
|
7
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Xu Z, Lin CC, Ho S, Vlad G, Suciu-Foca N. Suppression of Experimental Autoimmune Encephalomyelitis by ILT3.Fc. THE JOURNAL OF IMMUNOLOGY 2020; 206:554-565. [PMID: 33361206 DOI: 10.4049/jimmunol.2000265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the CNS that is characterized by demyelination, axonal loss, gliosis, and inflammation. The murine model of MS is the experimental autoimmune encephalopathy (EAE) induced by immunization of mice with myelin oligodendrocyte glycoprotein (MOG)35-55 Ig-like transcript 3 (ILT3) is an inhibitory cell surface receptor expressed by tolerogenic human dendritic cells. In this study, we show that the recombinant human ILT3.Fc protein binds to murine immune cells and inhibits the release of proinflammatory cytokines that cause the neuroinflammatory process that result in paralysis. Administration of ILT3.Fc prevents the rapid evolution of the disease in C57BL/6 mice and is associated with a profound reduction of proliferation of MOG35-55-specific Th1 and Th17 cells. Inhibition of IFN-γ and IL-17A in mice treated with ILT3.Fc is associated with delayed time of onset of the disease and its evolution to a peak clinical score. Neuropathological analysis shows a reduction in inflammatory infiltrates and demyelinated areas in the brains and spinal cords of treated mice. These results indicate that inhibition of Th1 and Th17 development provides effective suppression of EAE and suggests the feasibility of a clinical approach based on the use of ILT3.Fc for treatment of MS. Furthermore, our results open the way to further studies on the effect of the human ILT3.Fc protein in murine experimental models of autoimmunity and cancer.
Collapse
Affiliation(s)
- Zheng Xu
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; and
| | - Chun-Chieh Lin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Sophey Ho
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; and
| | - George Vlad
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; and
| | - Nicole Suciu-Foca
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; and
| |
Collapse
|
10
|
Kumar S, Leigh ND, Cao X. The Role of Co-stimulatory/Co-inhibitory Signals in Graft-vs.-Host Disease. Front Immunol 2018; 9:3003. [PMID: 30627129 PMCID: PMC6309815 DOI: 10.3389/fimmu.2018.03003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapeutic approach for various hematologic and immunologic ailments. Despite the beneficial impact of allo-HCT, its adverse effects cause severe health concerns. After transplantation, recognition of host cells as foreign entities by donor T cells induces graft-vs.-host disease (GVHD). Activation, proliferation and trafficking of donor T cells to target organs and tissues are critical steps in the pathogenesis of GVHD. T cell activation is a synergistic process of T cell receptor (TCR) recognition of major histocompatibility complex (MHC)-anchored antigen and co-stimulatory/co-inhibitory signaling in the presence of cytokines. Most of the currently used therapeutic regimens for GVHD are based on inhibiting the allogeneic T cell response or T-cell depletion (TCD). However, the immunosuppressive drugs and TCD hamper the therapeutic potential of allo-HCT, resulting in attenuated graft-vs.-leukemia (GVL) effect as well as increased vulnerability to infection. In view of the drawback of overbroad immunosuppression, co-stimulatory, and co-inhibitory molecules are plausible targets for selective modulation of T cell activation and function that can improve the effectiveness of allo-HCT. Therefore, this review collates existing knowledge of T cell co-stimulation and co-inhibition with current research that may have the potential to provide novel approaches to cure GVHD without sacrificing the beneficial effects of allo-HCT.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nicholas D Leigh
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
11
|
Xu Z, Chang CC, Li M, Zhang QY, Vasilescu ERM, D’Agati V, Floratos A, Vlad G, Suciu-Foca N. ILT3.Fc–CD166 Interaction Induces Inactivation of p70 S6 Kinase and Inhibits Tumor Cell Growth. THE JOURNAL OF IMMUNOLOGY 2017; 200:1207-1219. [DOI: 10.4049/jimmunol.1700553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
|
12
|
Iuamoto LR, Franco AS, Suguita FY, Essu FF, Oliveira LT, Kato JM, Torsani MB, Meyer A, Andraus W, Chaib E, D'Albuquerque LAC. Human islet xenotransplantation in rodents: A literature review of experimental model trends. Clinics (Sao Paulo) 2017; 72:238-243. [PMID: 28492724 PMCID: PMC5401612 DOI: 10.6061/clinics/2017(04)08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Among the innovations for the treatment of type 1 diabetes, islet transplantation is a less invasive method of treatment, although it is still in development. One of the greatest barriers to this technique is the low number of pancreas donors and the low number of pancreases that are available for transplantation. Rodent models have been chosen in most studies of islet rejection and type 1 diabetes prevention to evaluate the quality and function of isolated human islets and to identify alternative solutions to the problem of islet scarcity. The purpose of this study is to conduct a review of islet xenotransplantation experiments from humans to rodents, to organize and analyze the parameters of these experiments, to describe trends in experimental modeling and to assess the viability of this procedure. In this study, we reviewed recently published research regarding islet xenotransplantation from humans to rodents, and we summarized the findings and organized the relevant data. The included studies were recent reports that involved xenotransplantation using human islets in a rodent model. We excluded the studies that related to isotransplantation, autotransplantation and allotransplantation. A total of 34 studies that related to xenotransplantation were selected for review based on their relevance and current data. Advances in the use of different graft sites may overcome autoimmunity and rejection after transplantation, which may solve the problem of the scarcity of islet donors in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Leandro Ryuchi Iuamoto
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | | | | | | | | | | | | | - Alberto Meyer
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Wellington Andraus
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Eleazar Chaib
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
13
|
Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu ER, Vlad G, Suciu-Foca N. Molecular and Cellular Characterization of Human CD8 T Suppressor Cells. Front Immunol 2016; 7:549. [PMID: 27965674 PMCID: PMC5127796 DOI: 10.3389/fimmu.2016.00549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Abstract
Bidirectional interactions between dendritic cells and Ag-experienced T cells initiate either a tolerogenic or immunogenic pathway. The outcome of these interactions is of crucial importance in malignancy, transplantation, and autoimmune diseases. Blockade of costimulation results in the induction of T helper cell anergy and subsequent differentiation of antigen-specific CD8+ T suppressor/regulatory cells (Ts). Ts, primed in the presence of inhibitory signals, exert their inhibitory function in an antigen-specific manner, a feature with tremendous clinical potential. In transplantation or autoimmunity, antigen-specific Ts can enforce tolerance to auto- or allo-antigens, while otherwise leaving the immune response to pathogens uninhibited. Alternatively, blockade of inhibitory receptors results in the generation of cytolytic CD8+ T cells, which is vital toward defense against tumors and viral diseases. Because CD8+ T cells are MHC Class I restricted, they are able to recognize HLA-bound antigenic peptides presented not only by APC but also on parenchymal cells, thus eliciting or suppressing auto- or allo-immune reactions.
Collapse
Affiliation(s)
- Zheng Xu
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Sophey Ho
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Chih-Chao Chang
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Qing-Yin Zhang
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Elena-Rodica Vasilescu
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - George Vlad
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Nicole Suciu-Foca
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| |
Collapse
|
14
|
Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016; 15:25-40. [PMID: 26636629 PMCID: PMC4825776 DOI: 10.1080/15384101.2015.1121324] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.
Collapse
Affiliation(s)
- Xunlei Kang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Jaehyup Kim
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Mi Deng
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel John
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Heyu Chen
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Guojin Wu
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hiep Phan
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Cheng Cheng Zhang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
15
|
Mann ER, Bernardo D, English NR, Landy J, Al-Hassi HO, Peake STC, Man R, Elliott TR, Spranger H, Lee GH, Parian A, Brant SR, Lazarev M, Hart AL, Li X, Knight SC. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum. Gut 2016; 65:256-70. [PMID: 25666191 PMCID: PMC4530083 DOI: 10.1136/gutjnl-2014-307916] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. DESIGN Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. RESULTS A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. CONCLUSIONS The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK,Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Bernardo
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Nicholas R English
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Jon Landy
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK,St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Hafid O Al-Hassi
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Simon TC Peake
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK,St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Ripple Man
- St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Timothy R Elliott
- St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Henning Spranger
- St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Gui Han Lee
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Alyssa Parian
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven R Brant
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Lazarev
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ailsa L Hart
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK,St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Xuhang Li
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| |
Collapse
|
16
|
Wei Z, Gao W, Wu Y, Ni B, Tian Y. Mutual interaction between BCL6 and microRNAs in T cell differentiation. RNA Biol 2015; 12:21-5. [PMID: 25826411 DOI: 10.1080/15476286.2015.1017232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transcription factor B-cell CLL/lymphoma 6 (BCL6) and the regulatory factor microRNAs (miRNAs) are of great importance in the differentiation of T cell subsets. An increasing body of evidence has demonstrated that BCL6 and miRNAs can target one another and mutually adjust their expression in T cell subsets, such as T helper (Th)-2, Th17, CD8+ regulatory T (CD8+Treg) and T follicular helper (Tfh) cells. Here, we discuss the most recent advances and emerging concepts in how BCL6 and miRNAs regulate one another, and the effects of such mutual regulations on T cell subset differentiation.
Collapse
Affiliation(s)
- Zhiyuan Wei
- a Institute of Immunology; PLA; Third Military Medical University ; Chongqing , PR China
| | | | | | | | | |
Collapse
|
17
|
Waschbisch A, Sanderson N, Krumbholz M, Vlad G, Theil D, Schwab S, Mäurer M, Derfuss T. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. PLoS One 2014; 9:e115488. [PMID: 25551576 PMCID: PMC4281069 DOI: 10.1371/journal.pone.0115488] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022] Open
Abstract
Immunoglobulin-like transcript (ILT) 3 and 4 are inhibitory receptors that modulate immune responses. Their expression has been reported to be affected by interferon, offering a possible mechanism by which this cytokine exerts its therapeutic effect in multiple sclerosis, a condition thought to involve excessive immune activity. To investigate this possibility, we measured expression of ILT3 and ILT4 on immune cells from multiple sclerosis patients, and in post-mortem brain tissue. We also studied the ability of interferon beta, alone or in combination with vitamin D, to induce upregulation of these receptors in vitro, and compared expression levels between interferon-treated and untreated multiple sclerosis patients. In vitro interferon beta treatment led to a robust upregulation of ILT3 and ILT4 on monocytes, and dihydroxyvitamin D3 increased expression of ILT3 but not ILT4. ILT3 was abundant in demyelinating lesions in postmortem brain, and expression on monocytes in the cerebrospinal fluid was higher than in peripheral blood, suggesting that the central nervous system milieu induces ILT3, or that ILT3 positive monocytes preferentially enter the brain. Our data are consistent with involvement of ILT3 and ILT4 in the modulation of immune responsiveness in multiple sclerosis by both interferon and vitamin D.
Collapse
Affiliation(s)
- Anne Waschbisch
- Dept. of Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| | - Nicholas Sanderson
- Dept. of Neurology and Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Markus Krumbholz
- Institute of Clinical Neuroimmunology, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - George Vlad
- Dept. of Pathology & Cell Biology, Columbia University, New York, New York, United States of America
| | - Diethilde Theil
- Dept. of Neurology, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Stefan Schwab
- Dept. of Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mathias Mäurer
- Dept. of Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Derfuss
- Dept. of Neurology and Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
18
|
Xu Z, Ho S, Chang CC, Liu Z, Li M, Vasilescu ER, Clynes RA, Vlad G, Suciu-Foca N. ILT3.Fc inhibits the production of exosomes containing inflammatory microRNA in supernatants of alloactivated T cells. Hum Immunol 2014; 75:756-9. [PMID: 24862932 DOI: 10.1016/j.humimm.2014.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 12/12/2013] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Immune activation needs to be tightly regulated to control immune-mediated tissue damage. Inhibitory pathways serve to terminate an immune response and resolve inflammation. Persistent exposure to antigens can drive development of adaptive regulatory cells. Similarly exposure of activated T cells to the recombinant ILT3-Fc molecule during priming triggers the differentiation of CD8 T suppressor cells and the induction of CD4 T helper anergy. Ts express high levels of immunoregulatory signature genes together with low levels of microRNA which control their function. Analysis of microRNA contained by exosomes from cultures in which T cells were alloactivated in the presence or absence of ILT3.Fc, demonstrated that this agent inhibits the release of inflammatory microRNA. The source of such inflammatory microRNA was found to reside in alloactivated CD4 T cells, since exosomes from MLC primed CD4 T cells were shown to diminish the suppressive activity of ILT3-Fc-induced CD8(+) Ts at high effector to suppressor T cell ratios. This indicates that inflammatory exosomes can swing the balance between effector and regulatory T cells in favor of immunity. These data suggest that isolation and characterization of micro-RNA containing exosomes in patients' circulation may be of use for treatment, prevention and monitoring of immune activation.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sophey Ho
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Chih-Chao Chang
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zhuoru Liu
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Muyang Li
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Elena R Vasilescu
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Raphael A Clynes
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - George Vlad
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Nicole Suciu-Foca
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
19
|
Vasaturo A, Di Blasio S, Peeters DGA, de Koning CCH, de Vries JM, Figdor CG, Hato SV. Clinical Implications of Co-Inhibitory Molecule Expression in the Tumor Microenvironment for DC Vaccination: A Game of Stop and Go. Front Immunol 2013; 4:417. [PMID: 24348481 PMCID: PMC3847559 DOI: 10.3389/fimmu.2013.00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022] Open
Abstract
The aim of therapeutic dendritic cell (DC) vaccines in cancer immunotherapy is to activate cytotoxic T cells to recognize and attack the tumor. T cell activation requires the interaction of the T cell receptor with a cognate major-histocompatibility complex-peptide complex. Although initiated by antigen engagement, it is the complex balance between co-stimulatory and co-inhibitory signals on DCs that results in T cell activation or tolerance. Even when already activated, tumor-specific T cells can be neutralized by the expression of co-inhibitory molecules on tumor cells. These and other immunosuppressive cues in the tumor microenvironment are major factors currently hampering the application of DC vaccination. In this review, we discuss recent data regarding the essential and complex role of co-inhibitory molecules in regulating the immune response within the tumor microenvironment. In particular, possible therapeutic intervention strategies aimed at reversing or neutralizing suppressive networks within the tumor microenvironment will be emphasized. Importantly, blocking co-inhibitory molecule signaling, often referred to as immune checkpoint blockade, does not necessarily lead to an effective activation of tumor-specific T cells. Therefore, combination of checkpoint blockade with other immune potentiating therapeutic strategies, such as DC vaccination, might serve as a synergistic combination, capable of reversing effector T cells immunosuppression while at the same time increasing the efficacy of T cell-mediated immunotherapies. This will ultimately result in long-term anti-tumor immunity.
Collapse
Affiliation(s)
- Angela Vasaturo
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Stefania Di Blasio
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Deborah G A Peeters
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Coco C H de Koning
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands ; Department of Medical Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Stanleyson V Hato
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| |
Collapse
|
20
|
Chen L, Xu Z, Chang C, Ho S, Liu Z, Vlad G, Cortesini R, Clynes RA, Luo Y, Suciu-Foca N. Allospecific CD8 T suppressor cells induced by multiple MLC stimulation or priming in the presence of ILT3.Fc have similar gene expression profiles. Hum Immunol 2013; 75:190-6. [PMID: 24220571 DOI: 10.1016/j.humimm.2013.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/08/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Alloantigen specific CD8 T suppressor cells can be generated in vitro either by multiple stimulations of CD3 T cells with allogeneic APC or by single stimulation in primary MLC containing recombinant ILT3.Fc protein. The aim of the present study was to determine whether multiple MLC stimulation induced in CD8(+) CD28(-) T suppressor cells molecular changes that are similar to those observed in CD8 T suppressor cells from primary MLC containing ILT3.Fc protein. Our study demonstrates that the characteristic signatures of CD8 T suppressor cells, generated by either of these methods are the same consisting of up-regulation of the BCL6 transcriptional repressor and down-regulation of inflammatory microRNAs, miR-21, miR-30b, miR-146a, and miR-155 expression. In conclusion microRNAs which are increased under inflammatory conditions in activated CD4 and CD8 T cells with helper or cytotoxic function show low levels of expression in CD8 T cells which have acquired antigen-specific suppressor activity.
Collapse
Affiliation(s)
- Ling Chen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States; Department of Cardiology, The First People's Hospital of Jiujiang, Jiujiang Affiliated Hospital, Nanchang University, Jiujiang, Jiangxi 332000, China
| | - Zheng Xu
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - Chris Chang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - Sophey Ho
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - Zhuoru Liu
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - George Vlad
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - Raffaello Cortesini
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - Raphael A Clynes
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - Yun Luo
- Department of Cardiology, The First People's Hospital of Jiujiang, Jiujiang Affiliated Hospital, Nanchang University, Jiujiang, Jiangxi 332000, China
| | - Nicole Suciu-Foca
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
21
|
Bakdash G, Sittig SP, van Dijk T, Figdor CG, de Vries IJM. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front Immunol 2013; 4:53. [PMID: 23450201 PMCID: PMC3584294 DOI: 10.3389/fimmu.2013.00053] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/11/2013] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are central in maintaining the intricate balance between immunity and tolerance by orchestrating adaptive immune responses. Being the most potent antigen presenting cells, DCs are capable of educating naïve T cells into a wide variety of effector cells ranging from immunogenic CD4+ T helper cells and cytotoxic CD8+ T cells to tolerogenic regulatory T cells. This education is based on three fundamental signals. Signal I, which is mediated by antigen/major histocompatibility complexes binding to antigen-specific T cell receptors, guarantees antigen specificity. The co-stimulatory signal II, mediated by B7 family molecules, is crucial for the expansion of the antigen-specific T cells. The final step is T cell polarization by signal III, which is conveyed by DC-derived cytokines and determines the effector functions of the emerging T cell. Although co-stimulation is widely recognized to result from the engagement of T cell-derived CD28 with DC-expressed B7 molecules (CD80/CD86), other co-stimulatory pathways have been identified. These pathways can be divided into two groups based on their impact on primed T cells. Whereas pathways delivering activatory signals to T cells are termed co-stimulatory pathways, pathways delivering tolerogenic signals to T cells are termed co-inhibitory pathways. In this review, we discuss how the nature of DC-derived signal II determines the quality of ensuing T cell responses and eventually promoting either immunity or tolerance. A thorough understanding of this process is instrumental in determining the underlying mechanism of disorders demonstrating distorted immunity/tolerance balance, and would help innovating new therapeutic approaches for such disorders.
Collapse
Affiliation(s)
- Ghaith Bakdash
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
22
|
Dobrowolska H, Gill KZ, Serban G, Ivan E, Li Q, Qiao P, Suciu-Foca N, Savage D, Alobeid B, Bhagat G, Colovai AI. Expression of immune inhibitory receptor ILT3 in acute myeloid leukemia with monocytic differentiation. CYTOMETRY PART B-CLINICAL CYTOMETRY 2012; 84:21-9. [PMID: 23027709 DOI: 10.1002/cyto.b.21050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/04/2012] [Accepted: 09/19/2012] [Indexed: 11/12/2022]
Abstract
BACKGROUND The diagnosis of AML with monocytic differentiation is limited by the lack of highly sensitive and specific monocytic markers. Immunoglobulin-like transcript 3 (ILT3) is an immune inhibitory receptor expressed by myelomonocytic cells and at high levels by tolerogenic dendritic cells. METHODS Using flow cytometry, we analyzed the expression of ILT3 in 37 patients with AML and 20 patients with no detectable disease. RESULTS We showed that ILT3 was expressed in all cases of AML displaying monocytic differentiation (FAB M4/M5; N = 18), but not in AML M1/M2 and M3 (N = 19; P < 0.0001). Co-expression of ILT3 and immature cell markers, such as CD34 and CD117, was observed in monoblastic leukemia. ILT3 expression was preserved after treatment in M4/M5 patients with refractory or relapsed disease. ILT3 expression was associated with the presence of cytogenetic abnormalities linked to an intermediate prognosis (P = 0.001). Rare CD45dimCD34+CD117+ILT3+ cells were identified in noninvolved bone marrow, suggesting that ILT3 expression is acquired at an early stage by normal myelomonocytic precursors. CONCLUSIONS ILT3 is a highly sensitive and specific marker which distinguishes AML with monocytic differentiation from other types of AML. Testing of ILT3 expression should be incorporated into the initial diagnostic work-up and monitoring of patients with AML.
Collapse
Affiliation(s)
- Hanna Dobrowolska
- Department of Pathology and Cell Biology, Columbia University Medical Center and New York Presbyterian Hospital, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McKenna KC, Previte DM. Influence of CD8+ T regulatory cells on intraocular tumor development. Front Immunol 2012; 3:303. [PMID: 23060881 PMCID: PMC3460369 DOI: 10.3389/fimmu.2012.00303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/10/2012] [Indexed: 11/13/2022] Open
Abstract
The interior of the eye, or uvea, is a site of immune privilege where certain immune responses are attenuated or completely excluded to protect non-regenerating tissues essential for vision. One consequence of this immunoregulation is compromised immune mediated elimination of intraocular tumors. For example, certain murine tumor cell lines which are rejected by host immune responses when transplanted in the skin grow progressively when placed in the anterior chamber (a.c.) of the eye. Progressive ocular tumor growth occurs despite induction of tumor-specific CD8+ T cell responses capable of eliminating a subsequent tumor challenge in the skin or opposite eye. Why these CD8+ T effectors fail to eliminate established ocular tumors is not known. It is well appreciated that growth of tumors in the a.c. induces the generation of immunosuppressive CD8+ T regulatory (Treg) cells. However, the contribution of CD8+ Treg in ocular tumor progression remains unclear. Several studies indicate that these CD8+ Treg target responding CD4+ T cells to inhibit their induction of macrophage-dependent delayed type hypersensitivity (DTH) responses to tumor antigens (Ags). However, induction of tumor-specific CD4+ T cell responses does not assure intraocular tumor elimination. This review is focused on how CD8+ Treg could influence the tumoricidal activity of ocular tumor-specific CD8+ T effector cells.
Collapse
Affiliation(s)
- Kyle C McKenna
- Departments of Ophthalmology and Immunology/Medicine, University of Pittsburgh, University of Pittsburgh Cancer Institute Pittsburgh, PA, USA
| | | |
Collapse
|
24
|
Induction of antigen-specific human T suppressor cells by membrane and soluble ILT3. Exp Mol Pathol 2012; 93:294-301. [PMID: 23018130 DOI: 10.1016/j.yexmp.2012.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
Abstract
Antigen-specific CD8 suppressor T cells (CD8(+) Ts) are adaptive regulatory T cells that are induced in vivo and in vitro by chronic antigenic stimulation of human T cells. CD8(+) Ts induce the upregulation of the inhibitory receptors ILT3 and ILT4 on monocytes and dendritic cells rendering these antigen presenting cells (APCs) tolerogenic. Tolerogenic APCs induce CD4(+) T helper anergy and elicit the differentiation of CD4(+) and CD8(+) T regulatory/suppressor cells. Overexpression of membrane ILT3 in APC results in inhibition of NF-κB activation, transcription of inflammatory cytokines and costimulatory molecules. Soluble ILT3-Fc which contains only the extracellular, Ig-like domain linked to mutated IgG1 Fc, is strongly immunosuppressive. ILT3-Fc, induces the differentiation of human CD8(+) Ts which inhibit CD4(+) Th and CD8(+) CTL effector function both in vitro and in vivo. The acquisition of Ts' function by primed CD8(+) T cells treated with ILT3-Fc was demonstrated to be the effect of the significant upregulation of BCL6, a transcriptional repressor of IL-2, IFN-gamma, IL-5 and granzyme B. The upregulated expression of BCL6, SOCS1 and DUSP10 is integral to the signature of ILT3-Fc-induced CD8(+) Ts. These genes are known inhibitors of cytokine production and TCR signaling and are targeted by miRNAs which are suppressed by ILT3-Fc. ILT3-Fc induces tolerance to allogeneic human islets and reverses rejection after its onset in a humanized NOD/SCID mouse model. Based on these findings we postulate that ILT3-Fc may become an important new agent for treatment of autoimmunity and transplant rejection.
Collapse
|
25
|
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for autologous cell therapies, but significant roadblocks remain to translating iPSCs to the bedside. For example, concerns about the presumed autologous transplantation potential of iPSCs have been raised by a recent paper demonstrating that iPSC-derived teratomas were rejected by syngeneic hosts. Additionally, the reprogramming process can alter genomic and epigenomic states, so a key goal at this point is to determine the clinical relevance of these changes and minimize those that prove to be deleterious. Finally, thus far few studies have examined the efficacy and tumorigenicity of iPSCs in clinically relevant transplantation scenarios, an essential requirement for the FDA. We discuss potential solutions to these hurdles to provide a roadmap for iPSCs to "jump the dish" and become useful therapies.
Collapse
Affiliation(s)
- Bonnie Barrilleaux
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | |
Collapse
|
26
|
Chang CC, Zhang QY, Liu Z, Clynes RA, Suciu-Foca N, Vlad G. Downregulation of inflammatory microRNAs by Ig-like transcript 3 is essential for the differentiation of human CD8(+) T suppressor cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3042-52. [PMID: 22387553 DOI: 10.4049/jimmunol.1102899] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the mechanism underlying the immunoregulatory function of membrane Ig-like transcript 3 (ILT3) and soluble ILT3Fc. microRNA (miRNA) expression profile identified genes that were downregulated in ILT3-induced human CD8(+) T suppressor cells (Ts) while upregulated in T cells primed in the absence of ILT3. We found that miR-21, miR-30b, and miR-155 target the 3'-untranslated region of genes whose expression was strongly increased in ILT3Fc-induced Ts, such as dual specificity phosphatase 10, B cell CLL/lymphoma 6, and suppressor of cytokine signaling 1, respectively. Transfection of miRNA mimics or inhibitors and site-specific mutagenesis of their 3'-untranslated region binding sites indicated that B cell CLL/lymphoma 6, dual specificity phosphatase 10, and suppressor of cytokine signaling 1 are direct targets of miR-30b, miR-21, and miR-155. Primed CD8(+) T cells transfected with miR-21&30b, miR-21&155, or miR-21&30b&155 inhibitors displayed suppressor activity when added to autologous CD3-triggered CD4 T cells. Luciferase reporter assays of miR-21 and miR-155 indicated that their transcription is highly dependent on AP-1. Analysis of activated T cells showed that ILT3Fc inhibited the translocation to the nucleus of the AP-1 subunits, FOSB and c-FOS, and the phosphorylation of ZAP70 and phospholipase C-γ 1. In conclusion, ILT3Fc inhibits T cell activation and induces the generation of Ts targeting multiple inflammatory miRNA pathways.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
27
|
Ge G, Tian P, Liu H, Zheng J, Fan X, Ding C, Jin Z, Luo X, Xue W. Induction of CD4+ CD25+ Foxp3+ T regulatory cells by dendritic cells derived from ILT3 lentivirus-transduced human CD34+ cells. Transpl Immunol 2011; 26:19-26. [PMID: 22005288 DOI: 10.1016/j.trim.2011.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/01/2011] [Accepted: 10/02/2011] [Indexed: 12/13/2022]
Abstract
Immunoglobulin-like transcript 3 (ILT3) belongs to a family of inhibitory receptors with cytoplasmic immunoreceptor tyrosine based inhibitory motifs (ITIMs). Numerous studies have reported that increased ILT3 expression is associated with the tolerogenic properties of antigen-presenting cells (APCs) including dendritic cells (DCs). In this study, human CD34(+) hematopoietic stem/progenitor cells (HPSCs) were transduced with self-inactivating lentiviral vector carrying the ILT3 gene, and then induced to differentiate into DCs. Long-term and sustained transgene expression were observed. Importantly, DCs differentiated from ILT3-transduced HPSCs expressed high levels of human ILT3 and acquired strong tolerogenic capacity. This effect was associated with markedly decreased expression of co-stimulatory molecules (CD80, CD86) and down-regulation of NF-κB. Functionally, ILT3(high) DCs showed a reduced capacity to stimulate allogeneic T cell proliferation and increased the production of CD4(+)CD25(+)Foxp3(+) T regulatory cells with immunosuppressive activity. These results demonstrate that DCs derived from ILT3-transduced human CD34(+)HPSCs display tolerogenic properties to induce T regulatory cells in vitro.
Collapse
Affiliation(s)
- Guanqun Ge
- Department of Renal Transplant, Center of Nephropathy, The First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, 710061 Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Vlad G, King J, Chang CC, Liu Z, Friedman RA, Torkamani AA, Suciu-Foca N. Gene profile analysis of CD8(+) ILT3-Fc induced T suppressor cells. Hum Immunol 2010; 72:107-14. [PMID: 20974207 DOI: 10.1016/j.humimm.2010.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 01/08/2023]
Abstract
Gene profile analysis of ILT3-Fc-induced Ts revealed a significant upregulation of Zink finger proteins, most of which act as transcriptional repressors. Included among these repressors is BCL6, which was shown to play a critical role in the differentiation of ILT3-Fc-induced T suppressor (Ts) cells. Genes implicated in cell cycle progression were downregulated. Genes encoding numerous inflammatory cytokines and chemokines were also downregulated. In contrast, antiapoptotic genes, as well as members of the WNT and transforming growth factor-β pathways, were upregulated. This study elucidates certain important aspects of Ts differentiation and function.
Collapse
Affiliation(s)
- George Vlad
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Chang CC, Vlad G, D'Agati VD, Liu Z, Zhang QY, Witkowski P, Torkamani AA, Stokes MB, Ho EK, Cortesini R, Suciu-Foca N. BCL6 is required for differentiation of Ig-like transcript 3-Fc-induced CD8+ T suppressor cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5714-22. [PMID: 20935202 DOI: 10.4049/jimmunol.1001732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ig-like transcript 3 (ILT3) is an inhibitory receptor expressed by tolerogenic dendritic cells. When human CD8(+) T cells are allostimulated in the presence of recombinant ILT3-Fc protein, they differentiate into antigenic specific T suppressor (Ts) cells that inhibit CD4 and CD8 T cell effector function both in vitro and in vivo. ILT3-Fc-induced CD8(+) Ts cells express high amounts of BCL6 that are crucial to their function. Knockdown of BCL6 from unprimed human T cells prevents their differentiation into Ts cells, whereas ex vivo overexpression of BCL6 converts CD8(+) T cells into Ts cells. NOD/SCID mice transplanted with human pancreatic islets and humanized by injection of human PBMCs tolerate the graft and develop BCL6(high) CD8(+) Ts cells when treated with ILT3-Fc before or after the onset of rejection. This indicates that ILT3-Fc acts through BCL6 and is a potent immunosuppressive agent for reversing the onset of allo- or possibly autoimmune attacks against pancreatic islets.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vlad G, Chang CC, Colovai AI, Vasilescu ER, Cortesini R, Suciu-Foca N. Membrane and soluble ILT3 are critical to the generation of T suppressor cells and induction of immunological tolerance. Int Rev Immunol 2010; 29:119-32. [PMID: 20132030 DOI: 10.3109/08830180903281185] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tolerogenic phenotype of human dendritic cells is characterized by high cell surface expression of the inhibitory receptor ILT3. ILT3 signals both intracellularly inhibiting tyrosine phosphorylation, NF-kappaB and MAPK p38 activity, transcription of certain co-stimulatory molecules, secretion of cytokines and chemokines, and extracellularly into the T cells with which the dendritic cells interact. Both ILT3(high) tolerogenic dendritic cells and soluble ILT3 induce CD4 Th anergy and differentiation of antigen specific CD8 T suppressor cells. Recombinant ILT3-Fc protein has important immunotherapeutic potential acting directly on activated T cells and promoting the induction of immunological tolerance.
Collapse
Affiliation(s)
- George Vlad
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
32
|
Vaithilingam V, Oberholzer J, Guillemin GJ, Tuch BE. The humanized NOD/SCID mouse as a preclinical model to study the fate of encapsulated human islets. Rev Diabet Stud 2010; 7:62-73. [PMID: 20703439 DOI: 10.1900/rds.2010.7.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite encouraging results in animal models, the transplantation of microencapsulated islets into humans has not yet reached the therapeutic level. Recent clinical trials using microencapsulated human islets in barium alginate showed the presence of dense fibrotic overgrowth around the microcapsules with no viable islets. The major reason for this is limited understanding of what occurs when encapsulated human islets are allografted. This warrants the need for a suitable small animal model. In this study, we investigated the usefulness of NOD/SCID mice reconstituted with human PBMCs (called humanized NOD/SCID mice) as a preclinical model. In this model, human T cell engraftment could be achieved, and CD45+ cells were observed in the spleen and peripheral blood. Though the engrafted T cells caused a small fibrotic overgrowth around the microencapsulated human islets, this failed to stop the encapsulated islets from functioning in the diabetic recipient mice. The ability of encapsulated islets to survive in this mouse model might partly be attributed to the presence of Th2 cytokines IL-4 and IL-10, which are known to induce graft tolerance. In conclusion, this study showed that the hu-NOD/SCID mouse is not a suitable preclinical model to study the allograft rejection mechanisms of encapsulated human islets. As another result, the maintained viability of transplanted islets on the NOD/SCID background emphasized a critical role of protective mechanisms in autoimmune diabetes transplanted subjects due to specific immunoregulatory effects provided by IL-4 and IL-10.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- Diabetes Transplant Unit, Prince of Wales Hospital and University of New South Wales, and Australian Foundation for Diabetes Research, Sydney, Australia
| | | | | | | |
Collapse
|
33
|
Jacobson S, Heuts F, Juarez J, Hultcrantz M, Korsgren O, Svensson M, Rottenberg M, Flodström-Tullberg M. Alloreactivity but failure to reject human islet transplants by humanized Balb/c/Rag2gc mice. Scand J Immunol 2010; 71:83-90. [PMID: 20384859 DOI: 10.1111/j.1365-3083.2009.02356.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A human islet transplant can cure patients with type 1 diabetes. A drawback of islet transplantation is the life-long immunosuppressive medication, often associated with severe side effects. Moreover, in spite of the immunosuppressive therapy, islets are lost in the majority of transplanted patients over time. An improved small animal model for studies on human islet allograft rejection mechanisms and the development of new measures for its prevention is clearly warranted. Here, we evaluated the potential of Balb/cRag2(-/-)gammac(-/-) mice carrying a human-like immune system (so-called humanized mice) as a tool for studies on the rejection of transplanted human islets. Human T cells from Balb/cRag2(-/-)gammac(-/-) mice, which as neonates had been transplanted with CD34(+) human cord blood haematopoietic stem cells (HIS mice), proliferated in response to allogeneic human dendritic cells, but failed to reject a human islet allograft transplanted to the renal subcapsular space as assessed by immunohistochemistry and analysis of human serum C-peptide levels. Histological analysis revealed that few if any T cells had migrated to the grafted tissue. These observations question the usefulness of the HIS mouse model for studies on human islet allograft rejection mechanisms and highlight the need for further improvements.
Collapse
Affiliation(s)
- S Jacobson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Breslow RG, Rao JJ, Xing W, Hong DI, Barrett NA, Katz HR. Inhibition of Th2 adaptive immune responses and pulmonary inflammation by leukocyte Ig-like receptor B4 on dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:1003-13. [PMID: 19966208 DOI: 10.4049/jimmunol.0900877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously established that the inhibitory receptor LILRB4 mitigates LPS-induced, neutrophil-dependent pathologic effector mechanisms in inflammation. We now report that LILRB4 on dendritic cells (DCs) counterregulates development of an adaptive Th2 immune response and ensuing inflammation in a model of allergic pulmonary inflammation, initiated by inhalation sensitization with OVA and LPS followed by airway challenge with OVA. We found that Lilrb4(-/-) mice had significantly exacerbated eosinophilic pulmonary inflammation, as assessed in bronchoalveolar lavage and lung tissue, as well as elevated levels of OVA-specific IgE and Th2 cytokines produced by OVA-restimulated lymph node cells. LILRB4 was preferentially expressed on MHC class II(high)CD86(high) OVA-bearing DCs in lung-draining lymph nodes after sensitization or challenge. Moreover, the lymph nodes of Lilrb4(-/-) mice had significantly more of these mature DCs after challenge with OVA, which was accompanied by significantly more IL-4-producing lymphocytes, compared with Lilrb4(+/+) mice. Sensitization of naive Lilrb4(+/+) mice by transfer of OVA-LPS-pulsed Lilrb4(-/-) bone marrow-derived DCs was sufficient to confer exacerbated allergic lung pathology upon challenge with OVA, compared with mice that received Lilrb4(+/+) bone marrow-derived DCs. Our findings establish that maturation and migration of pulmonary DCs to lymph nodes in response to Ag and an innate immune stimulus is associated with upregulated expression of LILRB4. In addition, this receptor attenuates the number of these mature DCs and attendant IL-4-producing lymphocytes in the lymph nodes, and accordingly, the ability of DCs to elicit pathologic Th2 pulmonary inflammation.
Collapse
Affiliation(s)
- Rebecca G Breslow
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Konya C, Goronzy JJ, Weyand CM. Treating autoimmune disease by targeting CD8(+) T suppressor cells. Expert Opin Biol Ther 2009; 9:951-65. [PMID: 19522557 DOI: 10.1517/14712590903020759] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current treatments for autoimmune disease are hampered by the non-specificity of immunomodulatory interventions, having to accept broad suppression of immunoresponsiveness with potentially serious side effects, such as infection or malignancy. The development of antigen-specific approaches, downregulating pathogenic immune responses while maintaining protective immunity, would be a major step forward. One possible approach involves the targeting of physiological regulatory mechanisms, such as inhibitory CD8 T cells that are now recognized to fine-tune many aspects of immune responses. CD8 T suppressor (Ts) cells may directly inhibit other T cells or condition antigen-presenting cells in such a way that immune amplification steps are dampened. The promise of CD8 Ts cells lies in their potential to disrupt host-injurious immune responses in a targeted fashion. For therapeutic purposes, such CD8 Ts cells could either be generated in vitro and transferred into the host or their numbers and activity could be modulated by treating the patient with established or novel immunomodulators. Emerging evidence shows that several subsets of CD8 Ts cells exist. While there is still considerable uncertainty about the molecular mechanisms through which CD8 Ts cells can reset immune responses to protect the host, their potential diagnostic and therapeutic use is intriguing and has generated renewed interest.
Collapse
Affiliation(s)
- Christine Konya
- Emory University School of Medicine, Kathleen B. and Mason I. Lowance Center for Human Immunology and Rheumatology, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
36
|
Brown DP, Jones DC, Anderson KJ, Lapaque N, Buerki RA, Trowsdale J, Allen RL. The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection. BMC Immunol 2009; 10:56. [PMID: 19860908 PMCID: PMC2773765 DOI: 10.1186/1471-2172-10-56] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 10/27/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Leukocyte Ig-like receptors (LILR) are a family of innate immune receptors with immunomodulatory functions. High-level expression of the receptors LILRB2 (ILT4) and LILRB4 (ILT3) is a feature of tolerogenic antigen presenting cells and has been observed in cancer and transplant situations. There are relatively few studies regarding these receptors in the context of infection and it is not yet clear how LILRB4 exerts its inhibitory effects. RESULTS We studied the effects of LILRB4 ligation on antigen presenting cell phenotype, and the expression of LILRB2 and LILRB4 on Salmonella-infected antigen presenting cells. Ligation of LILRB4 throughout in vitro culture of dendritic cells led to an upregulation of the co-stimulatory protein CD86. Alterations in the production of IL-8 and IL-10 by LILRB4-ligated macrophages were also observed. Infection with Salmonella typhimurium or TLR stimulation with Salmonella components led to an upregulation of LILRB2 and LILRB4. CONCLUSION Our results indicate that the inhibitory effects of LILRB4 do not result from a failure to upregulate co-stimulatory proteins. In addition to the high level expression that can render antigen presenting cells tolerogenic, there may be a role for lower level expression and activity of LILRB2 and LILRB4 in response to TLR signalling during an immune response to bacterial infection.
Collapse
Affiliation(s)
- Damien P Brown
- Division of Cellular and Molecular Medicine, St Georges, University of London, Centre for Infection, London, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Kabalak G, Dobberstein SB, Matthias T, Reuter S, The YH, Dörner T, Schmidt RE, Witte T. Association of immunoglobulin-like transcript 6 deficiency with Sjögren's syndrome. ACTA ACUST UNITED AC 2009; 60:2923-5. [DOI: 10.1002/art.24804] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Ho EK, Vlad G, Colovai AI, Vasilescu ER, Schwartz J, Sondermeijer H, Burke E, Marboe CC, Itescu S, Suciu-Foca N, Mancini D. Alloantibodies in heart transplantation. Hum Immunol 2009; 70:825-9. [DOI: 10.1016/j.humimm.2009.06.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 12/01/2022]
|
39
|
Chui CS, Li D. Role of immunolglobulin-like transcript family receptors and their ligands in suppressor T-cell–induced dendritic cell tolerization. Hum Immunol 2009; 70:686-91. [DOI: 10.1016/j.humimm.2009.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 02/07/2023]
|
40
|
Anderson KJ, Allen RL. Regulation of T-cell immunity by leucocyte immunoglobulin-like receptors: innate immune receptors for self on antigen-presenting cells. Immunology 2009; 127:8-17. [PMID: 19368561 DOI: 10.1111/j.1365-2567.2009.03097.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Following recognition of microbial patterns, innate immune receptors provide a rapid innate response and trigger antigen-presenting cell maturation to instruct adaptive immune responses. Here we discuss a family of innate immune receptors for self - the leucocyte immunoglobulin-like receptors (LILRs). These LILRs exert powerful inhibitory effects on antigen-presenting cell phenotype and subsequent T-cell responses, and may act to constrain the effects of Toll-like receptor signalling. Despite their broad ligand specificity, differing affinities of LILRs for individual complexes of peptide-major histocompatibility complex can determine the nature of their effect on downstream immune responses. Expression and function of LILRs may be skewed in certain conditions such as cancer or human immunodeficiency virus infection, particularly by ectopic expression of human leucocyte antigen-G, a high-affinity LILR ligand. We discuss the relevance of LILR-mediated immune regulation across a range of scenarios from autoimmunity to transplant medicine, infection and cancer.
Collapse
Affiliation(s)
- Katie J Anderson
- Centre for Infection, St George's University of London, Cranmer Terrace, London, UK
| | | |
Collapse
|
41
|
Chang CC, Liu Z, Vlad G, Qin H, Qiao X, Mancini DM, Marboe CC, Cortesini R, Suciu-Foca N. Ig-like transcript 3 regulates expression of proinflammatory cytokines and migration of activated T cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:5208-16. [PMID: 19380766 DOI: 10.4049/jimmunol.0804048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ig-like transcript 3 (ILT3), an inhibitory receptor expressed by APC is involved in functional shaping of T cell responses toward a tolerant state. We have previously demonstrated that membrane (m) and soluble (s) ILT3 induce allogeneic tolerance to human islet cells in humanized NOD/SCID mice. Recombinant sILT3 induces the differentiation of CD8(+) T suppressor cells both in vivo and in vitro. To better understand the molecular mechanisms by which ILT3 suppresses immune responses, we have generated ILT3 knockdown (ILT3KD) dendritic cells (DC) and analyzed the phenotypic and functional characteristics of these cells. In this study, we report that silencing of ILT3 expression in DC (ILT3KD DC) increases TLR responsiveness to their specific ligands as reflected in increased synthesis and secretion of proinflammatory cytokines such as IL-1alpha, IL-1beta, and IL-6 and type I IFN. ILT3KD-DC also secretes more CXCL10 and CXCL11 chemokines in response to TLR ligation, thus accelerating T cell migration in diffusion chamber experiments. ILT3KD-DC elicit increased T cell proliferation and synthesis of proinflammatory cytokines IFN-gamma and IL-17A both in MLC and in culture with autologous DC pulsed with CMV protein. ILT3 signaling results in inhibition of NF-kappaB and, to a lesser extent, MAPK p38 pathways in DC. Our results suggest that ILT3 plays a critical role in the control of inflammation.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Pathology, Columbia University, NewYork, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vlad G, Stokes MB, Liu Z, Chang CC, Sondermeijer H, Vasilescu ER, Colovai AI, Berloco P, D'Agati VD, Ratner L, Cortesini R, Suciu-Foca N. Suppression of xenogeneic graft-versus-host disease by treatment with immunoglobulin-like transcript 3-Fc. Hum Immunol 2009; 70:663-9. [PMID: 19501624 DOI: 10.1016/j.humimm.2009.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/01/2009] [Accepted: 06/01/2009] [Indexed: 11/26/2022]
Abstract
Allogeneic hematopoietic cell transplantation represents an important therapy for certain malignant and nonmalignant diseases. However, graft-versus-host disease (GVHD) is a major cause of mortality and morbidity. The search for agents that can efficiently suppress GVHD has been going on for more than half a century. GVHD is particularly strong in xenogeneic donor-recipient combinations, given the unlimited number of potentially immunogenic antigens donor lymphocytes encounter in the host. Using a hu-nonobese diabetic/severe combined immunodeficiency (hu-NOD/SCID) gamma-null model of xenogeneic GVHD, we have demonstrated that treatment with recombinant immunoglobulin-like transcript 3-Fc protein induces the differentiation of CD8(+) T suppressor cells and blocks the cellular and humoral arm of the GVH reaction.
Collapse
Affiliation(s)
- George Vlad
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gleissner CA, Dengler TJ. Induction of ILT expression on nonprofessional antigen presenting cells: Clinical applications. Hum Immunol 2009; 70:357-9. [DOI: 10.1016/j.humimm.2009.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Immunoglobulin-like transcript 3: A crucial regulator of dendritic cell function. Hum Immunol 2009; 70:340-4. [DOI: 10.1016/j.humimm.2009.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/03/2009] [Indexed: 11/19/2022]
|
45
|
Qin H, Vlad G, Cortesini R, Suciu-Foca N, Manavalan JS. CD8+ suppressor and cytotoxic T cells recognize the same human leukocyte antigen-A2 restricted cytomegalovirus peptide. Hum Immunol 2008; 69:776-80. [PMID: 18848854 DOI: 10.1016/j.humimm.2008.08.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/07/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
Abstract
We explored the possibility that antigen-specific human CD8(+) T cells, which display cytotoxic or suppressor function, can recognize the same peptide epitope. Using the human leukocyte antigen-A0201 restricted immunodominant cytomegalovirus epitope pp65-NLVPMVATV for pulsing either mature/immunogenic or ILT3(high)ILT4(high) tolerogenic dendritic cells (DC), we generated cytotoxic and suppressor CD8(+) T-cell lines, respectively. Our data indicate that modulating the functional state of DC is crucial to the development of tolerogenic or immunogeneic peptide-specific vaccines.
Collapse
Affiliation(s)
- Haiyan Qin
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
46
|
Vlad G, Cortesini R, Suciu-Foca N. CD8+ T suppressor cells and the ILT3 master switch. Hum Immunol 2008; 69:681-6. [PMID: 18817834 DOI: 10.1016/j.humimm.2008.08.286] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/07/2008] [Accepted: 08/14/2008] [Indexed: 11/16/2022]
Abstract
Similar to helper and cytotoxic T cells, CD8(+) T suppressor cells (Ts) acquire antigen specificity via direct interaction with antigen-presenting cells (APC). They induce the upregulation of the inhibitory receptor immunoglobulin-like transcript (ILT)3 on professional and nonprofessional APC, rendering these cells tolerogenic and able to induce the differentiation of further waves of regulatory and suppressor T cells. This review sums up evidence that ILT3 is the centerpiece of CD8(+) Ts-driven suppression and acts as a master switch in the regulation of CD8(+) and CD4(+) T-cell responses to antigens in transplantation, autoimmunity, allergy, and cancer.
Collapse
Affiliation(s)
- George Vlad
- Columbia University, Department of Pathology, New York, NY 10032, USA
| | | | | |
Collapse
|