1
|
Tinklepaugh J, Mamrak NE. Imaging in Type 1 Diabetes, Current Perspectives and Directions. Mol Imaging Biol 2023; 25:1142-1149. [PMID: 37934378 DOI: 10.1007/s11307-023-01873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune-mediated attack of insulin-producing beta cells in the pancreas, leading to reliance on exogenous insulin to control a patient's blood glucose levels. As progress is being made in understanding the pathophysiology of the disease and how to better develop therapies to treat it, there is an increasing need for monitoring technologies to quantify beta cell mass and function throughout T1D progression and beta cell replacement therapy. Molecular imaging techniques offer a possible solution through both radiologic and non-radiologic means including positron emission tomography, magnetic resonance imaging, electron paramagnetic resonance imaging, and spatial omics. This commentary piece outlines the role of molecular imaging in T1D research and highlights the need for further applications of such methodologies in T1D.
Collapse
Affiliation(s)
- Jay Tinklepaugh
- Research Department, JDRF, 200 Vesey Street, New York, NY, USA
| | | |
Collapse
|
2
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Firth G, Georgiadou E, Griffiths A, Amrahli M, Kim J, Yu Z, Hu M, Stewart TJ, Leclerc I, Okamoto H, Gomez D, Blower PJ, Rutter GA. Impact of an SLC30A8 loss-of-function variant on the pancreatic distribution of zinc and manganese: laser ablation-ICP-MS and positron emission tomography studies in mice. Front Endocrinol (Lausanne) 2023; 14:1171933. [PMID: 37396167 PMCID: PMC10313231 DOI: 10.3389/fendo.2023.1171933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Common variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas]. Methods Following intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 μl) in wild-type (WT), heterozygous (R138X+/-), and homozygous (R138X+/+) mutant mice (14-15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS. Results Our findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/- mice, with smaller increases observed in R138X+/+ mice. Discussion These data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic β-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | | | - Maral Amrahli
- London Metallomics Facility, King’s College London, London, United Kingdom
| | - Jana Kim
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Zilin Yu
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | | | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
- Centre hospitalier de l’Université de Montréal (CHUM) Research Center and Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Daniel Gomez
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Philip J. Blower
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
- Centre hospitalier de l’Université de Montréal (CHUM) Research Center and Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological, University, Singapore, Singapore
| |
Collapse
|
4
|
Traeger J, Hu D, Yang M, Stacey G, Orr G. Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution. MEMBRANES 2023; 13:142. [PMID: 36837645 PMCID: PMC9958960 DOI: 10.3390/membranes13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Plant cell signaling often relies on the cellular organization of receptor-like kinases (RLKs) within membrane nanodomains to enhance signaling specificity and efficiency. Thus, nanometer-scale quantitative analysis of spatial organizations of RLKs could provide new understanding of mechanisms underlying plant responses to environmental stress. Here, we used stochastic optical reconstruction fluorescence microscopy (STORM) to quantify the colocalization of the flagellin-sensitive-2 (FLS2) receptor and the nanodomain marker, remorin, within Arabidopsis thaliana root hair cells. We found that recovery of FLS2 and remorin in the plasma membrane, following ligand-induced internalization by bacterial-flagellin-peptide (flg22), reached ~85% of their original membrane density after ~90 min. The pairs colocalized at the membrane at greater frequencies, compared with simulated randomly distributed pairs, except for directly after recovery, suggesting initial uncoordinated recovery followed by remorin and FLS2 pairing in the membrane. The purinergic receptor, P2K1, colocalized with remorin at similar frequencies as FLS2, while FLS2 and P2K1 colocalization occurred at significantly lower frequencies, suggesting that these RLKs mostly occupy distinct nanodomains. The chitin elicitor receptor, CERK1, colocalized with FLS2 and remorin at much lower frequencies, suggesting little coordination between CERK1 and FLS2. These findings emphasize STORM's capacity to observe distinct nanodomains and degrees of coordination between plant cell receptors, and their respective immune pathways.
Collapse
Affiliation(s)
- Jeremiah Traeger
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Mengran Yang
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
5
|
Li F, Mitchell HD, Mensch AC, Hu D, Laudadio ED, Hedlund Orbeck JK, Hamers RJ, Orr G. Expression Patterns of Energy-Related Genes in Single Cells Uncover Key Isoforms and Enzymes That Gain Priority Under Nanoparticle-Induced Stress. ACS NANO 2022; 16:7197-7209. [PMID: 35290009 PMCID: PMC9134505 DOI: 10.1021/acsnano.1c08934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/07/2022] [Indexed: 06/12/2023]
Abstract
Cellular responses to nanoparticles (NPs) have been largely studied in cell populations, providing averaged values that often misrepresent the true molecular processes that occur in the individual cell. To understand how a cell redistributes limited molecular resources to achieve optimal response and survival requires single-cell analysis. Here we applied multiplex single molecule-based fluorescence in situ hybridization (fliFISH) to quantify the expression of 10 genes simultaneously in individual intact cells, including glycolysis and glucose transporter genes, which are critical for restoring and maintaining energy balance. We focused on individual gill epithelial cell responses to lithium cobalt oxide (LCO) NPs, which are actively pursued as cathode materials in lithium-ion batteries, raising concerns about their impact on the environment and human health. We found large variabilities in the expression levels of all genes between neighboring cells under the same exposure conditions, from only a few transcripts to over 100 copies in individual cells. Gene expression ratios among the 10 genes in each cell uncovered shifts in favor of genes that play key roles in restoring and maintaining energy balance. Among these genes are isoforms that can secure and increase glycolysis rates more efficiently, as well as genes with multiple cellular functions, in addition to glycolysis, including DNA repair, regulation of gene expression, cell cycle progression, and proliferation. Our study uncovered prioritization of gene expression in individual cells for restoring energy balance under LCO NP exposures. Broadly, our study gained insight into single-cell strategies for redistributing limited resources to achieve optimal response and survival under stress.
Collapse
Affiliation(s)
- Fangjia Li
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National laboratory, Richland, Washington 99354, United States
| | - Hugh D. Mitchell
- Biological
Sciences Division, Pacific Northwest National
laboratory, Richland, Washington 99354, United States
| | - Arielle C. Mensch
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National laboratory, Richland, Washington 99354, United States
| | - Dehong Hu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National laboratory, Richland, Washington 99354, United States
| | - Elizabeth D. Laudadio
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | - Robert J. Hamers
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Galya Orr
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|