1
|
van der Heide V, McArdle S, Nelson MS, Cerosaletti K, Gnjatic S, Mikulski Z, Posgai AL, Kusmartseva I, Atkinson M, Homann D. Integrated histopathology of the human pancreas throughout stages of type 1 diabetes progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644000. [PMID: 40166299 PMCID: PMC11956956 DOI: 10.1101/2025.03.18.644000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Type 1 diabetes (T1D) is a progressive autoimmune condition that culminates in the loss of insulin-producing beta cells. Pancreatic histopathology provides essential insights into disease initiation and progression yet an integrated perspective of in situ pathogenic processes is lacking due to limited sample availability, the dispersed nature of anatomical lesions, and often restricted analytical dimensionality. Here, we combined multiplexed immunostaining, high-magnification whole-slide imaging, digital pathology, and semi-automated image analysis strategies to interrogate pancreatic tail and head regions obtained from organ donors across T1D stages including at-risk and at-onset cases. Deconvolution of architectural features, endocrine cell composition, immune cell burden, and spatial relations of ∼25,000 islets revealed a series of novel histopathological correlates especially in the prodromal disease stage preceding clinical T1D. Altogether, our comprehensive "single-islet" analyses permit the reconstruction of a revised natural T1D history with implications for further histopathological investigations, considerations of pathogenetic modalities, and therapeutic interventions.
Collapse
Affiliation(s)
- Verena van der Heide
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- These authors contributed equally
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- These authors contributed equally
| | - Michael S. Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Sacha Gnjatic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Tisch Cancer Institute, Department of Medicine, ISMMS, New York, NY 10029, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Dirk Homann
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Diabetes, Obesity & Metabolism Institute, Department of Medicine, ISMMS, New York, NY 10029, USA
- Lead contact
| |
Collapse
|
2
|
Cardona-Hernandez R, de la Cuadra-Grande A, Monje J, Echave M, Oyagüez I, Álvarez M, Leiva-Gea I. Are Trends in Economic Modeling of Pediatric Diabetes Mellitus up to Date with the Clinical Practice Guidelines and the Latest Scientific Findings? JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2025; 12:30-50. [PMID: 39911635 PMCID: PMC11797704 DOI: 10.36469/001c.127920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025]
Abstract
Background: Modeling techniques in the field of pediatrics present unique challenges beyond traditional model limitations, and sometimes difficulties in faithfully simulating the condition's evolution over time. Objective: This study aimed to identify whether economic modeling approaches in diabetes in pediatric patients align with the recommendations of clinical practice guidelines and the latest scientific evidence. Methods: A literature review was performed in March 2023 to identify modeling-based economic evaluations in diabetes in pediatric patients. Data were extracted and synthesized from eligible studies. Clinical practice guidelines for diabetes were gathered to compare their alignment with modeling strategies. Two endocrinology specialists provided insights on the latest findings in diabetes that are not yet included in the guidelines. A multidisciplinary group of experts agreed on the relevant themes to conduct the comparative analysis: parameter informing on glycemic control, diabetic ketoacidosis/hypoglycemia, C-peptide as prognostic biomarker, metabolic memory, age at diagnosis, socioeconomic status, pediatric-specific sources of risk equations, and pediatric-specific sources of utilities/disutilities. Results: Nineteen modeling-based studies (7 de novo, 12 predesigned models) and 34 guidelines were selected. Hemoglobin A1c was the main parameter to model the glycemic control; however, guidelines recommend the usage of complementary measures (eg, time in range) which are not included in economic models. Eight models included diabetic ketoacidosis (42.1%), 16 included hypoglycemia (84.2%), 2 included C-peptide (1 of those as prognostic factor) (10.5%) and 1 included legacy effect (5.3%). Neither guidelines nor models included recent findings, such as age at diagnosis or socioeconomic status, as prognostic factors. The lack of pediatric-specific sources for risk equations and utility/disutility values were additional limitations. Discussion: Economic models designed for assessing interventions in diabetes in pediatric patients should be based on pediatric-specific data and include novel adjuvant glucose-monitoring metrics and latest evidence on prognostic factors (C-peptide, legacy effect, age at diagnosis, socioeconomic status) to provide a more faithful reflection of the disease. Conclusions: Economic models represent useful tools to inform decision making. However, further research assessing the gaps is needed to enhance evidence-based health economic modeling that best represents reality.
Collapse
Affiliation(s)
| | | | - Julen Monje
- Health Economics & Outcomes Research Medtronic (Spain)
| | - María Echave
- Pharmacoeconomics & Outcomes Research Iberia (PORIB)
| | | | - María Álvarez
- Health Economics & Outcomes Research Medtronic (Spain)
| | - Isabel Leiva-Gea
- Department of Pediatric Endocrinology Regional University Hospital of Malaga
| |
Collapse
|
3
|
Azulay RS, Rodrigues V, Lago DCF, de Almeida AGFP, de Abreu JDMF, Matos L, Andrade C, Nascimento GC, Magalhães M, Facundo A, de Oliveira Neto CP, Sá AG, Silva DA, Gomes MB, Faria MDS. Relationship Between C-Peptide Levels, Clinical Features, and Serum Data in a Brazilian Type 1 Diabetes Population with Large Variations in Genomic Ancestry. Int J Mol Sci 2024; 25:11144. [PMID: 39456927 PMCID: PMC11508759 DOI: 10.3390/ijms252011144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic disease characterized by the immune-mediated destruction of the pancreatic beta cells responsible for insulin production. The secreted insulin and C-peptide are equimolar. Due to its longer half-life, C-peptide has become a safer means of assessing the pancreatic reserve. C-peptide levels were evaluated in a population of patients with T1D, focusing on the relationship between this variable and other factors. In addition, the influence of C-peptide on metabolic control and microvascular complications was investigated. This cross-sectional study included 95 patients who had been diagnosed with T1D at least five years earlier. These patients were evaluated using a clinical demographic survey, anthropometric data, laboratory tests, and fundoscopy. This study showed that 29.5% of patients had residual insulin secretion, which correlated directly with their age at diagnosis. No statistically significant differences in metabolic control or microvascular complications were observed between the C-peptide level groups. In addition, our results indicate that ancestry does not influence the persistence of residual C-peptide function in our highly mixed population. It is recommended that future research consider incorporating new variables, such as HLA and pancreatic autoimmunity, as factors that may influence residual β-cell function.
Collapse
Affiliation(s)
- Rossana Sousa Azulay
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Vandilson Rodrigues
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Débora Cristina Ferreira Lago
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Ana Gregória Ferreira Pereira de Almeida
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Joana D’Arc Matos França de Abreu
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Lincoln Matos
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Caio Andrade
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luis 65085-580, Brazil
| | - Gilvan Cortês Nascimento
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Marcelo Magalhães
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Alexandre Facundo
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Clariano Pires de Oliveira Neto
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Adriana Guimarães Sá
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory (LDD), Rio de Janeiro State University (UERJ), Rio de Janeiro 20550-900, Brazil;
| | - Marília Brito Gomes
- Diabetes Unit, Rio de Janeiro State University (UERJ), Rio de Janeiro 20551-030, Brazil;
| | - Manuel dos Santos Faria
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís 65020-070, Brazil; (D.C.F.L.); (A.G.F.P.d.A.); (J.D.M.F.d.A.); (L.M.); (G.C.N.); (A.F.); (C.P.d.O.N.); (M.d.S.F.)
- Research Group in Endocrinology and Clinical and Molecular Metabolism (ENDOCLIM), Sao Luis 65020-070, Brazil; (V.R.); (C.A.); (M.M.); (A.G.S.)
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luis 65085-580, Brazil
| |
Collapse
|
4
|
Iqbal S, Jayyab AA, Alrashdi AM, Shujauddin S, Clua-Espuny JL, Reverté-Villarroya S. The Predictive Potential of C-Peptide in Differentiating Type 1 Diabetes From Type 2 Diabetes in an Outpatient Population in Abu Dhabi. Clin Ther 2024; 46:696-701. [PMID: 39117487 DOI: 10.1016/j.clinthera.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE We aimed to investigate the predictive potential of plasma connecting peptide (C-peptide) in differentiating type 1 diabetes (T1D) from type 2 diabetes (T2D) and to inform evidence-based diabetes classification criteria. METHODS A retrospective review was performed of all the patients with diabetes visiting an outpatient diabetology, endocrinology, general practice and family medicine tertiary health care center between January 2016 and December 2021. FINDINGS Two hundred twelve individuals with diabetes were included, 85 (44.8%) with T1D and 127 (55.2%) with T2D. Mean (SD) age at diagnosis was 35.9 (15.1) years, and 112 (52.8%) men. Median (interquartile range [IQR]) duration of diabetes was 3.8 (3.0-4.5) years (T1D, 3.9 [3.5-4.6]; T2D, 3.4 [2.4-4.4]; P = 0.001). Body mass index was <18.5 kg/m2 in 5 (2.5%) individuals (T1D, 5; T2D, none), 18.5 to <25 kg/m2 in 57 (28.5%) (T1D, 32; T2D, 25), 25 to <30 kg/m2 in 58 (29%) (T1D, 28; T2D, 30), and >30 kg/m2 in 80 (40.0%) (T1D, 20; T2D, 60). Median (IQR) glycosylated hemoglobin was 7.4% (6.7%-8.5%) (T1D, 8.3% [7.2%-9.9%]; T2D, 7% [6.3%-7.6%]; P = 0.0001). Median (IQR) C-peptide concentration was 0.59 nmol/L (0.01-1.14 nmol/L) (T1D, 0.01 nmol/L [0.003-0.05 nmol/L]; T2D, 1.03 nmol/L [0.70-1.44 nmol/L]; P = 0.0001). C-peptide concentration of ≤0.16 nmol/L showed 92.9% sensitivity, 1-specificity of 2.4%, and AUC of 97.2% (CI, 94.7%-99.6%; P = 0.0001) in differentiating T1D from T2D. IMPLICATIONS To our knowledge, this is the first study in the Middle East and North Africa region highlighting the role of C-peptide in diabetes classification. The estimated cutoff point for C-peptide concentration (≤0.16 nmol/L) will certainly help in accurately classifying the T1D and will rule out the routine clinical judgmental approaches in the region, especially in those scenarios and periods where it is always difficult to diagnose the diabetes type. Quantifying the cutoff for C-peptide is among the vital strengths of this study that will provide a better treatment plan in diabetes care management. Also, we evaluated concomitant glucose levels to rule out the phenomenon of falsely low C-peptide values in the setting of hypoglycemia or severe glucose toxicity. Based on our findings, C-peptide testing could be included in postulating an evidence-based guideline that differentiates T1D from T2D. Despite this, our study has some limitations, including the selection bias due to the retrospective design and low C-peptide levels could be indicative of low pancreatic reserves due to other causes or long-standing T2D, and quantifying these reasons requires additional resources and time.
Collapse
Affiliation(s)
- Sajid Iqbal
- Nursing Department, Universitat Rovira i Virgili, Campus Terres de l'Ebre, Tortosa, Tarragona, Spain; Faculty of Health and Medical Science, Liwa College of Technology, Abu Dhabi, United Arab Emirates.
| | - Abdulrahim Abu Jayyab
- Faculty of Health and Medical Science, Liwa College of Technology, Abu Dhabi, United Arab Emirates
| | - Ayah Mohammad Alrashdi
- Faculty of Health and Medical Science, Liwa College of Technology, Abu Dhabi, United Arab Emirates; Burjeel Hospital, Abu Dhabi, United Arab Emirates
| | | | - Josep Lluis Clua-Espuny
- Primary Health-Care Center EAP Tortosa Est, Institut Català de la Salut, CAP El Temple Plaça Carrilet, Tortosa, Spain; Research Support Unit Terres de l'Ebre, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol) (Barcelona), Ebrictus Research Group, Terres de l'Ebre, Tortosa, Spain
| | - Silvia Reverté-Villarroya
- Nursing Department, Universitat Rovira i Virgili, Campus Terres de l'Ebre, Tortosa, Tarragona, Spain; Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Carretera Esplanetes, Tortosa, Tarragona, Spain
| |
Collapse
|
5
|
Guo C, Lu Y. Early Conversion of Intensive Insulin Therapy to IDegLira Demonstrates Higher Efficacy and Safety in Reducing Fasting Blood Glucose and HbA1c in T2DM Patients. Diabetes Metab Syndr Obes 2024; 17:3217-3226. [PMID: 39224113 PMCID: PMC11368103 DOI: 10.2147/dmso.s472174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background A short-term insulin intensive therapy is an important method used in clinical practice to control blood glucose, and a scientific post-treatment plan is key to long-term blood glucose stability control. This study aimed to investigate efficacy and safety of early conversion of intensive insulin therapy to IDegLira in T2DM patients. Methods This study was a prospective study, involving 80 T2DM patients finally. Patients were firstly treated with insulin for intensified therapy (Pre-IDegLira group), then switched to insulin degludec and liraglutide (IDegLira) for 3 months (IDegLira-3 months group). Data including HbA1c, fasting blood glucose, fasting C-peptide, weight, insulin dosage, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were analyzed. Correlations between fasting blood glucose and other parameters were evaluated with Pearson correlation analysis. Results IDegLira early conversion significantly reduced fasting blood glucose (p<0.001), weight (p=0.015), and insulin dosage (p=0.001) of T2DM patients compared to those of Pre-IDegLira group. HbA1c level was remarkably lower in T2DM patients underwent IDegLira early conversion compared to that in Pre-IDegLira group (p<0.001), with HbA1c <7% proportion of 73.75% (59/80). IDegLira early conversion significantly downregulated levels of TC (p<0.001), TG (p<0.001), LDL-C (p<0.001), and upregulated HDL-C level (p=0.017) of T2DM patients, compared to those in Pre-IDegLira group. IDegLira early conversion markedly reduced ALT (p<0.001) and AST (p=0.002) levels of T2DM patients compared to those in Pre-IDegLira group. IDegLira early conversion demonstrated a positive correlation between fasting blood glucose and HbA1c (r=0.531, p<0.001) or TG level (r=0.336, p=0.002) in T2DM patients. Conclusion Early conversion of intensive insulin therapy to IDegLira effectively reduced fasting blood glucose and HbA1c in T2DM patients with higher safety.
Collapse
Affiliation(s)
- Caiyun Guo
- Department of Endocrinology, YuYao People’s Hospital, Ningbo, Zhejiang Province, People’s Republic of China
| | - Yang Lu
- Department of Endocrinology, YuYao People’s Hospital, Ningbo, Zhejiang Province, People’s Republic of China
| |
Collapse
|
6
|
Chen Y, Tang WH, Cao CY, Xu QC. Correlation of peripheral blood C-peptide, interleutin-6, and heparin-binding protein with lung injury in patients with hyperlipidemic pancreatitis. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:584-590. [DOI: 10.11569/wcjd.v32.i8.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
7
|
Marcovecchio ML, Hendriks AEJ, Delfin C, Battelino T, Danne T, Evans ML, Johannesen J, Kaur S, Knip M, Overbergh L, Pociot F, Todd JA, Van der Schueren B, Wicker LS, Peakman M, Mathieu C. The INNODIA Type 1 Diabetes Natural History Study: a European cohort of newly diagnosed children, adolescents and adults. Diabetologia 2024; 67:995-1008. [PMID: 38517484 PMCID: PMC11058619 DOI: 10.1007/s00125-024-06124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 03/24/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Department of Paediatric Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - A Emile J Hendriks
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Diabetes and Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Carl Delfin
- Department of Pharmacometrics, Novo Nordisk A/S, Søborg, Denmark
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Thomas Danne
- Centre for Paediatric Endocrinology, Diabetology, and Clinical Research, Auf Der Bult Children's Hospital, Hannover, Germany
| | - Mark L Evans
- Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jesper Johannesen
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev, Denmark; Institute of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - John A Todd
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Linda S Wicker
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, MA, USA
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Morgan NG. Insulitis in human type 1 diabetes: lessons from an enigmatic lesion. Eur J Endocrinol 2024; 190:lvae002. [PMID: 38231086 PMCID: PMC10824273 DOI: 10.1093/ejendo/lvae002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Type 1 diabetes is caused by a deficiency of insulin secretion which has been considered traditionally as the outcome of a precipitous decline in the viability of β-cells in the islets of Langerhans, brought about by autoimmune-mediated attack. Consistent with this, various classes of lymphocyte, as well as cells of the innate immune system have been found in association with islets during disease progression. However, analysis of human pancreas from subjects with type 1 diabetes has revealed that insulitis is often less intense than in equivalent animal models of the disease and can affect many fewer islets than expected, at disease onset. This is especially true in subjects developing type 1 diabetes in, or beyond, their teenage years. Such studies imply that both the phenotype and the number of immune cells present within insulitic lesions can vary among individuals in an age-dependent manner. Additionally, the influent lymphocytes are often mainly arrayed peripherally around islets rather than gaining direct access to the endocrine cell core. Thus, insulitis remains an enigmatic phenomenon in human pancreas and this review seeks to explore the current understanding of its likely role in the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Noel G Morgan
- Department of Clinical and Biomedical Science, Islet Biology Exeter (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter EX2 5DW, United Kingdom
| |
Collapse
|
9
|
Leete P. Type 1 diabetes in the pancreas: A histological perspective. Diabet Med 2023; 40:e15228. [PMID: 37735524 DOI: 10.1111/dme.15228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
AIMS This review aims to introduce research in the pancreas to a broader audience. The pancreas is a heterocrine gland residing deep within our abdominal cavity. It is the home to our islets, which play a pivotal role in regulating metabolic homeostasis. Due to its structure and location, it is an impossible organ to study, in molecular detail, in living humans, and yet, understanding the pancreas is critical if we aim to characterise the immunopathology of type 1 diabetes (T1D) and one day prevent the triggering of the autoimmune attack associated with ß-cell demise. METHODS Over a 100 years ago, we began studying pancreatic histology using cadaveric samples and clever adaptations to microscopes. As histologists, some may say nothing much has changed. Nevertheless, our microscopes can now interrogate multiple proteins at molecular resolution. Images of pancreas sections are no longer constrained to a single field of view and can capture a thousands and thousands of cells. AI-image-analysis packages can analyse these massive data sets offering breakthrough findings. CONCLUSION This narrative review will provide an overview of pancreatic anatomy, and the importance of research focused on the pancreas in T1D. It will range from histological breakthroughs to briefly discussing the challenges associated with characterising the organ. I shall briefly introduce a selection of the available global biobanks and touch on the distinct pancreatic endotypes that differ immunologically and in ß-cell behaviour. Finally, I will introduce the idea of developing a collaborative tool aimed at developing a cohesive framework for characterising heterogeneity and stratifying endotypes in T1D more readily.
Collapse
Affiliation(s)
- Pia Leete
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Galderisi A, Carr ALJ, Martino M, Taylor P, Senior P, Dayan C. Quantifying beta cell function in the preclinical stages of type 1 diabetes. Diabetologia 2023; 66:2189-2199. [PMID: 37712956 PMCID: PMC10627950 DOI: 10.1007/s00125-023-06011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Clinically symptomatic type 1 diabetes (stage 3 type 1 diabetes) is preceded by a pre-symptomatic phase, characterised by progressive loss of functional beta cell mass after the onset of islet autoimmunity, with (stage 2) or without (stage 1) measurable changes in glucose profile during an OGTT. Identifying metabolic tests that can longitudinally track changes in beta cell function is of pivotal importance to track disease progression and measure the effect of disease-modifying interventions. In this review we describe the metabolic changes that occur in the early pre-symptomatic stages of type 1 diabetes with respect to both insulin secretion and insulin sensitivity, as well as the measurable outcomes that can be derived from the available tests. We also discuss the use of metabolic modelling to identify insulin secretion and sensitivity, and the measurable changes during dynamic tests such as the OGTT. Finally, we review the role of risk indices and minimally invasive measures such as those derived from the use of continuous glucose monitoring.
Collapse
Affiliation(s)
| | - Alice L J Carr
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Mariangela Martino
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Taylor
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Colin Dayan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
11
|
Lendínez-Jurado A, López-Siguero JP, Gómez-Perea A, Ariza-Jiménez AB, Becerra-Paz I, Tapia-Ceballos L, Cruces-Ponce C, Jiménez-Hinojosa JM, Morcillo S, Leiva-Gea I. Pediatric Type 1 Diabetes: Is Age at Onset a Determining Factor in Advanced Hybrid Closed-Loop Insulin Therapy? J Clin Med 2023; 12:6951. [PMID: 37959415 PMCID: PMC10647771 DOI: 10.3390/jcm12216951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The integration of continuous glucose monitoring systems with insulin infusion pumps has shown improved glycemic control, with improvements in hyperglycemia, hypoglycemia, Hb1Ac, and greater autonomy in daily life. These have been most studied in adults and there are currently not many articles published in the pediatric population that establish their correlation with age of debut. METHODS Prospective, single-study. A total of 28 patients (mean age 12 ± 2.43 years, 57% male, duration of diabetes 7.84 ± 2.46 years) were included and divided into two groups according to age at T1D onset (≤4 years and >4 years). Follow-up for 3 months, with glucometric variables extracted at different cut-off points after the start of the closed-loop (baseline, 1 month, 3 months). RESULTS Significant improvement was evidenced at 1 month and 3 months after closed-loop system implantation, with better glycemic control in the older age group at baseline at TIR (74.06% ± 6.37% vs. 80.33% ± 7.49% at 1 month, p < 0.003; 71.87% ± 6.58% vs. 78.75% ± 5.94% at 3 months, p < 0.009), TAR1 (18.25% ± 4.54% vs. 14.33% ± 5.74% at 1 month, p < 0.006; 19.87% ± 5.15% vs. 14.67% ± 4. 36% at 3 months, p < 0.009) and TAR2 (4.75% ± 2.67% vs. 2.75% ± 1.96% at 1 month, p = 0.0307; 5.40% ± 2.85% vs. 3% ± 2.45% at 3 months, p < 0.027). CONCLUSIONS the use of automated systems such as the MiniMedTM780G system brings glucometric results closer to those recommended by consensus, especially in age at T1D onset >4 years. However, the management in pediatrics continues to be a challenge even after the implementation of these systems, especially in terms of hyperglycemia and glycemic variability.
Collapse
Affiliation(s)
- Alfonso Lendínez-Jurado
- Department of Pediatric Endocrinology, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain; (J.P.L.-S.); (A.G.-P.); (I.B.-P.); (L.T.-C.); (C.C.-P.); (J.M.J.-H.); (I.L.-G.)
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Juan Pedro López-Siguero
- Department of Pediatric Endocrinology, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain; (J.P.L.-S.); (A.G.-P.); (I.B.-P.); (L.T.-C.); (C.C.-P.); (J.M.J.-H.); (I.L.-G.)
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
| | - Ana Gómez-Perea
- Department of Pediatric Endocrinology, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain; (J.P.L.-S.); (A.G.-P.); (I.B.-P.); (L.T.-C.); (C.C.-P.); (J.M.J.-H.); (I.L.-G.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
| | - Ana B. Ariza-Jiménez
- Department of Pediatric Endocrinology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain;
- Department of Pediatrics, University of Cordoba, Av. Menéndez Pidal, 7, 14004 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Icía Becerra-Paz
- Department of Pediatric Endocrinology, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain; (J.P.L.-S.); (A.G.-P.); (I.B.-P.); (L.T.-C.); (C.C.-P.); (J.M.J.-H.); (I.L.-G.)
| | - Leopoldo Tapia-Ceballos
- Department of Pediatric Endocrinology, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain; (J.P.L.-S.); (A.G.-P.); (I.B.-P.); (L.T.-C.); (C.C.-P.); (J.M.J.-H.); (I.L.-G.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
| | - Carmen Cruces-Ponce
- Department of Pediatric Endocrinology, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain; (J.P.L.-S.); (A.G.-P.); (I.B.-P.); (L.T.-C.); (C.C.-P.); (J.M.J.-H.); (I.L.-G.)
| | - José Manuel Jiménez-Hinojosa
- Department of Pediatric Endocrinology, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain; (J.P.L.-S.); (A.G.-P.); (I.B.-P.); (L.T.-C.); (C.C.-P.); (J.M.J.-H.); (I.L.-G.)
| | - Sonsoles Morcillo
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III Madrid, 29010 Málaga, Spain
| | - Isabel Leiva-Gea
- Department of Pediatric Endocrinology, Hospital Regional Universitario de Málaga, 29011 Málaga, Spain; (J.P.L.-S.); (A.G.-P.); (I.B.-P.); (L.T.-C.); (C.C.-P.); (J.M.J.-H.); (I.L.-G.)
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
| |
Collapse
|
12
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GSF, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Disease-modifying therapies and features linked to treatment response in type 1 diabetes prevention: a systematic review. COMMUNICATIONS MEDICINE 2023; 3:130. [PMID: 37794169 PMCID: PMC10550983 DOI: 10.1038/s43856-023-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Prevention efforts have focused on immune modulation and supporting beta cell health before or around diagnosis; however, heterogeneity in disease progression and therapy response has limited translation to clinical practice, highlighting the need for precision medicine approaches to T1D disease modification. METHODS To understand the state of knowledge in this area, we performed a systematic review of randomized-controlled trials with ≥50 participants cataloged in PubMed or Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. RESULTS We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ precision analyses to assess features linked to treatment response. Age, beta cell function measures, and immune phenotypes are most frequently tested. However, analyses are typically not prespecified, with inconsistent methods of reporting, and tend to report positive findings. CONCLUSIONS While the quality of prevention and intervention trials is overall high, the low quality of precision analyses makes it difficult to draw meaningful conclusions that inform clinical practice. To facilitate precision medicine approaches to T1D prevention, considerations for future precision studies include the incorporation of uniform outcome measures, reproducible biomarkers, and prespecified, fully powered precision analyses into future trial design.
Collapse
Affiliation(s)
- Jamie L Felton
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kurt J Griffin
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Sanford Research, Sioux Falls, SD, USA
| | - Richard A Oram
- NIHR Exeter Biomedical Research Centre (BRC), Academic Kidney Unit, University of Exeter, Devon, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, Devon, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, Devon, UK
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gabriela S F Monaco
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Randi K Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | | | - Stephen Gitelman
- Department of Pediatrics, Diabetes Center; University of California at San Francisco, San Francisco, CA, USA
| | - John M Wentworth
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne Department of Medicine, Parkville, VIC, Australia
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX, USA
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Cantley J, Eizirik DL, Latres E, Dayan CM. Islet cells in human type 1 diabetes: from recent advances to novel therapies - a symposium-based roadmap for future research. J Endocrinol 2023; 259:e230082. [PMID: 37493471 PMCID: PMC10502961 DOI: 10.1530/joe-23-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
There is a growing understanding that the early phases of type 1 diabetes (T1D) are characterised by a deleterious dialogue between the pancreatic beta cells and the immune system. This, combined with the urgent need to better translate this growing knowledge into novel therapies, provided the background for the JDRF-DiabetesUK-INNODIA-nPOD symposium entitled 'Islet cells in human T1D: from recent advances to novel therapies', which took place in Stockholm, Sweden, in September 2022. We provide in this article an overview of the main themes addressed in the symposium, pointing to both promising conclusions and key unmet needs that remain to be addressed in order to achieve better approaches to prevent or reverse T1D.
Collapse
Affiliation(s)
- J Cantley
- School of Medicine, University of Dundee, Dundee, United Kingdom of Great Britain and Northern Ireland
| | - D L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles Faculté de Médecine, Bruxelles, Belgium
| | - E Latres
- JDRF International, New York, NY, USA
| | - C M Dayan
- Cardiff University School of Medicine, Cardiff, United Kingdom of Great Britain and Northern Ireland
| | - the JDRF-DiabetesUK-INNODIA-nPOD Stockholm Symposium 2022
- School of Medicine, University of Dundee, Dundee, United Kingdom of Great Britain and Northern Ireland
- ULB Center for Diabetes Research, Université Libre de Bruxelles Faculté de Médecine, Bruxelles, Belgium
- JDRF International, New York, NY, USA
- Cardiff University School of Medicine, Cardiff, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
14
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GS, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Type 1 Diabetes Prevention: a systematic review of studies testing disease-modifying therapies and features linked to treatment response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.12.23288421. [PMID: 37131690 PMCID: PMC10153317 DOI: 10.1101/2023.04.12.23288421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Efforts to prevent T1D have focused on modulating immune responses and supporting beta cell health; however, heterogeneity in disease progression and responses to therapies have made these efforts difficult to translate to clinical practice, highlighting the need for precision medicine approaches to T1D prevention. Methods To understand the current state of knowledge regarding precision approaches to T1D prevention, we performed a systematic review of randomized-controlled trials from the past 25 years testing disease-modifying therapies in T1D and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. Results We identified 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss in individuals at disease onset. Seventeen agents tested, mostly immunotherapies, showed benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employed precision analyses to assess features linked to treatment response. Age, measures of beta cell function and immune phenotypes were most frequently tested. However, analyses were typically not prespecified, with inconsistent methods reporting, and tended to report positive findings. Conclusions While the quality of prevention and intervention trials was overall high, low quality of precision analyses made it difficult to draw meaningful conclusions that inform clinical practice. Thus, prespecified precision analyses should be incorporated into the design of future studies and reported in full to facilitate precision medicine approaches to T1D prevention. Plain Language Summary Type 1 diabetes (T1D) results from the destruction of insulin-producing cells in the pancreas, necessitating lifelong insulin dependence. T1D prevention remains an elusive goal, largely due to immense variability in disease progression. Agents tested to date in clinical trials work in a subset of individuals, highlighting the need for precision medicine approaches to prevention. We systematically reviewed clinical trials of disease-modifying therapy in T1D. While age, measures of beta cell function, and immune phenotypes were most commonly identified as factors that influenced treatment response, the overall quality of these studies was low. This review reveals an important need to proactively design clinical trials with well-defined analyses to ensure that results can be interpreted and applied to clinical practice.
Collapse
|
15
|
Tatovic D, Narendran P, Dayan CM. A perspective on treating type 1 diabetes mellitus before insulin is needed. Nat Rev Endocrinol 2023; 19:361-370. [PMID: 36914759 DOI: 10.1038/s41574-023-00816-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a progressive autoimmune disease that starts long before a clinical diagnosis is made. The American Diabetes Association recognizes three stages: stage 1 (normoglycaemic and positive for autoantibodies to β-cell antigens); stage 2 (asymptomatic with dysglycaemia); and stage 3, which is defined by glucose levels consistent with the definition of diabetes mellitus. This Perspective focuses on the management of the proportion of individuals with early stage 3 T1DM who do not immediately require insulin; a stage we propose should be termed stage 3a. To date, this period of non-insulin-dependent T1DM has been largely unrecognized. Importantly, it represents a window of opportunity for intervention, as remaining at this stage might delay the need for insulin by months or years. Extending the insulin-free period and/or avoiding unnecessary insulin therapy are important goals, as there is no risk of hypoglycaemia during this period and the adherence burden on patients of glycaemic monitoring and daily adjustments for diet and exercise is substantially reduced. Recognizing the pressing need for guidance on adequate management of children and adults with stage 3a T1DM, we present our perspective on the subject, which needs to be tested in formal and adequately powered clinical trials.
Collapse
Affiliation(s)
- Danijela Tatovic
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Colin M Dayan
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| |
Collapse
|
16
|
Abstract
First envisioned by early diabetes clinicians, a person-centred approach to care was an aspirational goal that aimed to match insulin therapy to each individual's unique requirements. In the 100 years since the discovery of insulin, this goal has evolved to include personalised approaches to type 1 diabetes diagnosis, treatment, prevention and prediction. These advances have been facilitated by the recognition of type 1 diabetes as an autoimmune disease and by advances in our understanding of diabetes pathophysiology, genetics and natural history, which have occurred in parallel with advancements in insulin delivery, glucose monitoring and tools for self-management. In this review, we discuss how these personalised approaches have improved diabetes care and how improved understanding of pathogenesis and human biology might inform precision medicine in the future.
Collapse
Affiliation(s)
- Alice L J Carr
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
17
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|