1
|
Mallone R, Sims E, Achenbach P, Mathieu C, Pugliese A, Atkinson M, Dutta S, Evans-Molina C, Klatzmann D, Koralova A, Long SA, Overbergh L, Rodriguez-Calvo T, Ziegler AG, You S. Emerging Concepts and Success Stories in Type 1 Diabetes Research: A Road Map for a Bright Future. Diabetes 2025; 74:12-21. [PMID: 39446565 DOI: 10.2337/db24-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Type 1 diabetes treatment stands at a crucial and exciting crossroad since the 2022 U.S. Food and Drug Administration approval of teplizumab to delay disease development. In this article, we discuss four major conceptual and practical issues that emerged as key to further advancement in type 1 diabetes research and therapies. First, collaborative networks leveraging the synergy between the type 1 diabetes research and care community members are key to fostering innovation, know-how, and translation into the clinical arena worldwide. Second, recent clinical trials in presymptomatic stage 2 and recent-onset stage 3 disease have shown the promise, and potential pitfalls, of using immunomodulatory and/or β-cell protective agents to achieve sustained remission or prevention. Third, the increasingly appreciated heterogeneity of clinical, immunological, and metabolic phenotypes and disease trajectories is of critical importance to advance the decision-making process for tailored type 1 diabetes care and therapy. Fourth, the clinical benefits of early diagnosis of β-cell autoimmunity warrant consideration of general population screening for islet autoantibodies, which requires further efforts to address the technical, organizational, and ethical challenges inherent to a sustainable program. Efforts are underway to integrate these four concepts into the future directions of type 1 diabetes research and therapy. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Roberto Mallone
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
- Service de Diabétologie et Immunologie Clinique, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN
| | - Emily Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mark Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Department of Medicine, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN
| | - David Klatzmann
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department (i2B), Sorbonne Université, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- Immunology-Immunopathology-Immunotherapy (i3), INSERM UMRS 959, Sorbonne UniversitéParis, France
| | - Anne Koralova
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY
| | - S Alice Long
- Translational Immunology, Benaroya Research Institute, Seattle, WA
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | - Sylvaine You
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN
| |
Collapse
|
2
|
Bazile C, Abdel Malik MM, Ackeifi C, Anderson RL, Beck RW, Donath MY, Dutta S, Hedrick JA, Karpen SR, Kay TWH, Marder T, Marinac M, McVean J, Meyer R, Pettus J, Quattrin T, Verstegen RHJ, Vieth JA, Latres E. TNF-α inhibitors for type 1 diabetes: exploring the path to a pivotal clinical trial. Front Immunol 2024; 15:1470677. [PMID: 39411715 PMCID: PMC11473295 DOI: 10.3389/fimmu.2024.1470677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells in the pancreas. This destruction leads to chronic hyperglycemia, necessitating lifelong insulin therapy to manage blood glucose levels. Typically diagnosed in children and young adults, T1D can, however, occur at any age. Ongoing research aims to uncover the precise mechanisms underlying T1D and to develop potential interventions. These include efforts to modulate the immune system, regenerate β-cells, and create advanced insulin delivery systems. Emerging therapies, such as closed-loop insulin pumps, stem cell-derived β-cell replacement and disease-modifying therapies (DMTs), offer hope for improving the quality of life for individuals with T1D and potentially moving towards a cure. Currently, there are no disease-modifying therapies approved for stage 3 T1D. Preserving β-cell function in stage 3 T1D is associated with better clinical outcomes, including lower HbA1c and decreased risk of hypoglycemia, neuropathy, and retinopathy. Tumor Necrosis Factor alpha (TNF-α) inhibitors have demonstrated efficacy at preserving β-cell function by measurement of C-peptide in two clinical trials in people with stage 3 T1D. However, TNF-α inhibitors have yet to be evaluated in a pivotal trial for T1D. To address the promising clinical findings of TNF-α inhibitors in T1D, Breakthrough T1D convened a panel of key opinion leaders (KOLs) in the field. The workshop aimed to outline an optimal clinical path for moving TNF-α inhibitors to a pivotal clinical trial in T1D. Here, we summarize the evidence for the beneficial use of TNF-α inhibitors in T1D and considerations for strategies collectively identified to advance TNF-α inhibitors beyond phase 2 clinical studies for stage 3 T1D.
Collapse
Affiliation(s)
- Cassandra Bazile
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Courtney Ackeifi
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Roy W. Beck
- Jaeb Center for Health Research, Tampa, FL,
United States
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University of Basel, Basel, Switzerland
| | - Sanjoy Dutta
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Stephen R. Karpen
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | - Thomas W. H. Kay
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Marjana Marinac
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | | | - Jeremy Pettus
- Division of Endocrinology and Metabolism, Department of Medicine, University of
California San Diego, La Jolla, CA, United States
| | - Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ruud H. J. Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
- Division of Rheumatology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua A. Vieth
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | - Esther Latres
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| |
Collapse
|
3
|
Feng S, Zhang Y, Hou C, Liu Y, Gao Y, Song Y, Luo J. A temperature-responsive dual-hormone foam nanoengine improves rectal absorptivity of insulin-pramlintide for diabetes treatment. SCIENCE ADVANCES 2024; 10:eadn8695. [PMID: 39196940 PMCID: PMC11352908 DOI: 10.1126/sciadv.adn8695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Despite the therapeutic benefits of insulin-pramlintide dual-hormone therapy in diabetes, its application potential has been limited due to a lack of efficient delivery routes. Here, we developed a temperature-responsive dual-hormone foam nanoengine (HormFoam) and combined it with a customized spraying device to further construct an in situ foam-generating system for improving the rectal bioavailability of dual-hormone therapy. To support rapid clinical translation, a continuous microfluidic preparation for HormFoam was proposed, including the power unit of perfluorocarbon nanodroplets and the pharmaceutical components Pluronic F127-functionalized liposomal insulin and pramlintide. We found that HormFoam could consistently generate foams to drive drugs forward after rectal administration, which enhanced intestinal distribution and mucosa absorption, leading to systemic codelivery of insulin-pramlintide. HormFoam reproduced the physiology of endocrine pancreas for glycemic control and induced body weight loss while reversing metabolic disorders in diabetic mice with good biosafety. Therefore, HormFoam represents a state-of-the-art dual-hormone regimen with the potential to address unmet needs in diabetes management.
Collapse
Affiliation(s)
- Shujun Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chunyuan Hou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Simmons KM, Sims EK. Screening and Prevention of Type 1 Diabetes: Where Are We? J Clin Endocrinol Metab 2023; 108:3067-3079. [PMID: 37290044 PMCID: PMC11491628 DOI: 10.1210/clinem/dgad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
A diagnosis of type 1 diabetes (T1D) and the subsequent requirement for exogenous insulin treatment is associated with considerable acute and chronic morbidity and a substantial effect on patient quality of life. Importantly, a large body of work suggests that early identification of presymptomatic T1D can accurately predict clinical disease, and when paired with education and monitoring, can yield improved health outcomes. Furthermore, a growing cadre of effective disease-modifying therapies provides the potential to alter the natural history of early stages of T1D. In this mini review, we highlight prior work that has led to the current landscape of T1D screening and prevention, as well as challenges and next steps moving into the future of these rapidly evolving areas of patient care.
Collapse
Affiliation(s)
- Kimber M Simmons
- Barbara Davis Center for Diabetes, Division of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Atkinson MA, Haller MJ, Schatz DA, Battaglia M, Mathieu C. Time for changes in type 1 diabetes intervention trial designs. Lancet Diabetes Endocrinol 2023; 11:789-791. [PMID: 37802093 PMCID: PMC11022190 DOI: 10.1016/s2213-8587(23)00262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/01/2023] [Indexed: 10/08/2023]
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL, USA; Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Manuela Battaglia
- Department of Medicine, Katholieke Universiteit, University Hospital Gasthuisberg, Leuven, Belgium
| | - Chantal Mathieu
- Department of Medicine, Katholieke Universiteit, University Hospital Gasthuisberg, Leuven, Belgium; Division of Endocrinology, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
6
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GSF, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Disease-modifying therapies and features linked to treatment response in type 1 diabetes prevention: a systematic review. COMMUNICATIONS MEDICINE 2023; 3:130. [PMID: 37794169 PMCID: PMC10550983 DOI: 10.1038/s43856-023-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Prevention efforts have focused on immune modulation and supporting beta cell health before or around diagnosis; however, heterogeneity in disease progression and therapy response has limited translation to clinical practice, highlighting the need for precision medicine approaches to T1D disease modification. METHODS To understand the state of knowledge in this area, we performed a systematic review of randomized-controlled trials with ≥50 participants cataloged in PubMed or Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. RESULTS We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ precision analyses to assess features linked to treatment response. Age, beta cell function measures, and immune phenotypes are most frequently tested. However, analyses are typically not prespecified, with inconsistent methods of reporting, and tend to report positive findings. CONCLUSIONS While the quality of prevention and intervention trials is overall high, the low quality of precision analyses makes it difficult to draw meaningful conclusions that inform clinical practice. To facilitate precision medicine approaches to T1D prevention, considerations for future precision studies include the incorporation of uniform outcome measures, reproducible biomarkers, and prespecified, fully powered precision analyses into future trial design.
Collapse
Affiliation(s)
- Jamie L Felton
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kurt J Griffin
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Sanford Research, Sioux Falls, SD, USA
| | - Richard A Oram
- NIHR Exeter Biomedical Research Centre (BRC), Academic Kidney Unit, University of Exeter, Devon, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, Devon, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, Devon, UK
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gabriela S F Monaco
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Randi K Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | | | - Stephen Gitelman
- Department of Pediatrics, Diabetes Center; University of California at San Francisco, San Francisco, CA, USA
| | - John M Wentworth
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne Department of Medicine, Parkville, VIC, Australia
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX, USA
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Limbert C, von dem Berge T, Danne T. Personalizing Early-Stage Type 1 Diabetes in Children. Diabetes Care 2023; 46:1747-1749. [PMID: 37729506 DOI: 10.2337/dci23-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Affiliation(s)
- Catarina Limbert
- Unit of Paediatric Endocrinology and Diabetes, Hospital Dona Estefânia, Lisbon, Portugal
- Comprehensive Health Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Thomas Danne
- Children's Hospital AUF DER BULT, Hannover, Germany
- Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Marrie RA, Sormani MP, Apap Mangion S, Bovis F, Cheung WY, Cutter GR, Feys P, Hill MD, Koch MW, McCreary M, Mowry EM, Park JJH, Piehl F, Salter A, Chataway J. Improving the efficiency of clinical trials in multiple sclerosis. Mult Scler 2023; 29:1136-1148. [PMID: 37555492 PMCID: PMC10413792 DOI: 10.1177/13524585231189671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Phase 3 clinical trials for disease-modifying therapies in relapsing-remitting multiple sclerosis (RRMS) have utilized a limited number of conventional designs with a high degree of success. However, these designs limit the types of questions that can be addressed, and the time and cost required. Moreover, trials involving people with progressive multiple sclerosis (MS) have been less successful. OBJECTIVE The objective of this paper is to discuss complex innovative trial designs, intermediate and composite outcomes and to improve the efficiency of trial design in MS and broaden questions that can be addressed, particularly as applied to progressive MS. METHODS We held an international workshop with experts in clinical trial design. RESULTS Recommendations include increasing the use of complex innovative designs, developing biomarkers to enrich progressive MS trial populations, prioritize intermediate outcomes for further development that target therapeutic mechanisms of action other than peripherally mediated inflammation, investigate acceptability to people with MS of data linkage for studying long-term outcomes of clinical trials, use Bayesian designs to potentially reduce sample sizes required for pediatric trials, and provide sustained funding for platform trials and registries that can support pragmatic trials. CONCLUSION Novel trial designs and further development of intermediate outcomes may improve clinical trial efficiency in MS and address novel therapeutic questions.
Collapse
Affiliation(s)
- Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa, Genoa, Italy/IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sean Apap Mangion
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Francesca Bovis
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Winson Y Cheung
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter Feys
- REVAL Rehabilitation Research Center, REVAL, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium/Universitair MS Centrum, UMSC, Hasselt, Belgium
| | - Michael D Hill
- Departments of Clinical Neurosciences, Community Health Sciences, Medicine, and Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcus Werner Koch
- Departments of Clinical Neurosciences, Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Morgan McCreary
- Department of Neurology, Section on Statistical Planning and Analysis, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jay JH Park
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Amber Salter
- Department of Neurology, Section on Statistical Planning and Analysis, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK/National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK/Medical Research Council Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| |
Collapse
|
9
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GS, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Type 1 Diabetes Prevention: a systematic review of studies testing disease-modifying therapies and features linked to treatment response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.12.23288421. [PMID: 37131690 PMCID: PMC10153317 DOI: 10.1101/2023.04.12.23288421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Efforts to prevent T1D have focused on modulating immune responses and supporting beta cell health; however, heterogeneity in disease progression and responses to therapies have made these efforts difficult to translate to clinical practice, highlighting the need for precision medicine approaches to T1D prevention. Methods To understand the current state of knowledge regarding precision approaches to T1D prevention, we performed a systematic review of randomized-controlled trials from the past 25 years testing disease-modifying therapies in T1D and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. Results We identified 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss in individuals at disease onset. Seventeen agents tested, mostly immunotherapies, showed benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employed precision analyses to assess features linked to treatment response. Age, measures of beta cell function and immune phenotypes were most frequently tested. However, analyses were typically not prespecified, with inconsistent methods reporting, and tended to report positive findings. Conclusions While the quality of prevention and intervention trials was overall high, low quality of precision analyses made it difficult to draw meaningful conclusions that inform clinical practice. Thus, prespecified precision analyses should be incorporated into the design of future studies and reported in full to facilitate precision medicine approaches to T1D prevention. Plain Language Summary Type 1 diabetes (T1D) results from the destruction of insulin-producing cells in the pancreas, necessitating lifelong insulin dependence. T1D prevention remains an elusive goal, largely due to immense variability in disease progression. Agents tested to date in clinical trials work in a subset of individuals, highlighting the need for precision medicine approaches to prevention. We systematically reviewed clinical trials of disease-modifying therapy in T1D. While age, measures of beta cell function, and immune phenotypes were most commonly identified as factors that influenced treatment response, the overall quality of these studies was low. This review reveals an important need to proactively design clinical trials with well-defined analyses to ensure that results can be interpreted and applied to clinical practice.
Collapse
|
10
|
Boltri JM, Tracer H, Strogatz D, Idzik S, Schumacher P, Fukagawa N, Leake E, Powell C, Shell D, Wu S, Herman WH. The National Clinical Care Commission Report to Congress: Leveraging Federal Policies and Programs to Prevent Diabetes in People With Prediabetes. Diabetes Care 2023; 46:e39-e50. [PMID: 36701590 PMCID: PMC9887613 DOI: 10.2337/dc22-0620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/03/2022] [Indexed: 01/27/2023]
Abstract
Individuals with an elevated fasting glucose level, elevated glucose level after glucose challenge, or elevated hemoglobin A1c level below the diagnostic threshold for diabetes (collectively termed prediabetes) are at increased risk for type 2 diabetes. More than one-third of U.S. adults have prediabetes but fewer than one in five are aware of the diagnosis. Rigorous scientific research has demonstrated the efficacy of both intensive lifestyle interventions and metformin in delaying or preventing progression from prediabetes to type 2 diabetes. The National Clinical Care Commission (NCCC) was a federal advisory committee charged with evaluating and making recommendations to improve federal programs related to the prevention of diabetes and its complications. In this article, we describe the recommendations of an NCCC subcommittee that focused primarily on prevention of type 2 diabetes in people with prediabetes. These recommendations aim to improve current federal diabetes prevention activities by 1) increasing awareness of and diagnosis of prediabetes on a population basis; 2) increasing the availability of, referral to, and insurance coverage for the National Diabetes Prevention Program and the Medicare Diabetes Prevention Program; 3) facilitating Food and Drug Administration review and approval of metformin for diabetes prevention; and 4) supporting research to enhance the effectiveness of diabetes prevention. Cognizant of the burden of type 1 diabetes, the recommendations also highlight the importance of research to advance our understanding of the etiology of and opportunities for prevention of type 1 diabetes.
Collapse
Affiliation(s)
| | - Howard Tracer
- Agency for Healthcare Research and Quality, Department of Health and Human Services, Rockville, MD
| | | | - Shannon Idzik
- School of Nursing, University of Maryland, Baltimore, MD
| | - Pat Schumacher
- Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA
| | | | - Ellen Leake
- Juvenile Diabetes Research Foundation, Jackson, MS
| | - Clydette Powell
- School of Medicine and Health Services, George Washington University, Washington, DC
| | | | - Samuel Wu
- U.S. Office of Minority Health, Rockville, MD
| | | |
Collapse
|