1
|
Al-Bkoor T, Ata F, Bint I Bilal A, Abdulgayoom M, Cherif H, Surchi H. Post-Thymectomy Autoimmune Flare-Up With New-Onset Type 1 Diabetes Mellitus. JCEM CASE REPORTS 2024; 2:luae039. [PMID: 38524389 PMCID: PMC10958770 DOI: 10.1210/jcemcr/luae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 03/26/2024]
Abstract
The thymus gland aids in the maturation of the immune system. An overactive or malfunctioning thymus gland, as seen in thymomas, can lead to disrupted immune systems. Thymectomy, the usual treatment, can paradoxically lead to further derangements in the immune system, leading to new autoimmune disorders. Most of these reported disorders are rheumatological. Except preclinical studies, there are no reported cases of autoimmune diabetes post-thymectomy. A 25-year-old woman who had malignant thymoma underwent chemotherapy, followed by thymectomy and radiotherapy. She developed autoimmune diabetes mellitus (AID) approximately 1 year post-thymectomy, evident from raised glycated hemoglobin, anti-glutamic acid decarboxylase (GAD) antibodies, ineffectiveness of oral glucose-lowering agents, and positive response to insulin. AID can occur after thymectomy, as evidenced by animal studies and this case report. Whether these patients would have long-term outcomes and control of diabetes differently than classic type 1 diabetes mellitus (T1D) is uncertain. Further research is needed to prove causality between thymectomy and diabetes.
Collapse
Affiliation(s)
- Tareq Al-Bkoor
- Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Fateen Ata
- Department of Endocrinology and Metabolism, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Honar Cherif
- Department of Hematology, Hamad Medical Corporation, Doha, Qatar
| | - Haval Surchi
- Department of Endocrinology and Metabolism, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
Takeda Y, Shimomura T, Asao H, Wakabayashi I. Relationship between Immunological Abnormalities in Rat Models of Diabetes Mellitus and the Amplification Circuits for Diabetes. J Diabetes Res 2017; 2017:4275851. [PMID: 28299342 PMCID: PMC5337356 DOI: 10.1155/2017/4275851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
A better understanding of pathogenic mechanisms is required in order to treat diseases. However, the mechanisms of diabetes mellitus and diabetic complications are extremely complex. Immune reactions are involved in the pathogenesis of diabetes and its complications, while diabetes influences immune reactions. Furthermore, both diabetes and immune reactions are influenced by genetic and environmental factors. To address these issues, animal models are useful tools. So far, various animal models of diabetes have been developed in rats, which have advantages over mice models in terms of the larger volume of tissue samples and the variety of type 2 diabetes models. In this review, we introduce rat models of diabetes and summarize the immune reactions in diabetic rat models. Finally, we speculate on the relationship between immune reactions and diabetic episodes. For example, diabetes-prone Biobreeding rats, type 1 diabetes model rats, exhibit increased autoreactive cellular and inflammatory immune reactions, while Goto-Kakizaki rats, type 2 diabetes model rats, exhibit increased Th2 reactions and attenuation of phagocytic activity. Investigation of immunological abnormalities in various diabetic rat models is useful for elucidating complicated mechanisms in the pathophysiology of diabetes. Studying immunological alterations, such as predominance of Th1/17 or Th2 cells, humoral immunity, and innate immune reactions, may improve understanding the structure of amplification circuits for diabetes in future studies.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
- *Yuji Takeda:
| | - Tomoko Shimomura
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
3
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
4
|
Askenasy N. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res 2016; 64:36-43. [PMID: 26482052 DOI: 10.1007/s12026-015-8725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.
Collapse
|
5
|
Zhou J, Kong C, Wang X, Jia Y, Wang L, Chang H, Sun L. In silico Analysis of TCR Vβ7 of Two Patients with Type 1 Diabetes Mellitus. J Lab Physicians 2014; 5:79-82. [PMID: 24701098 PMCID: PMC3968635 DOI: 10.4103/0974-2727.119845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To compare the sequences and crystal structures of variable region of beta chain 7 (Vβ7) of T cell receptor (TCR) of two patients with type 1 diabetes mellitus (T1DM). PATIENTS AND METHODS The skewness of TCR Vβ7 of two T1DM patients were detected with real-time florescence quantitative polymerase chain reaction (FQ-PCR) and deoxyribonucleic acid (DNA) melting curve analysis technique followed by being sequenced, the crystal structures of them were simulated according to CPH models 2.0 Server, IMGT database, and RasMol 2 software. RESULTS The whole sequences of TCR Vβ7 of T1DM patient-1 were "CASRTAGQYEQYFGPGTR", that of patient-2 were "CASRTAGQYEQFFGPGTR"; the only difference between them lied on the 12(th) amino acid. The crystal structures of Vβ7 of the two patients simulated with backbone model were rather similar, while that with sphere model were obviously different. CONCLUSION Although the TCR Vβ7 of the T1DM patients share the similar gene sequences, their crystal structures simulated with sphere model are different, and the mechanism needs further study.
Collapse
Affiliation(s)
- Jianwei Zhou
- Clinic Laboratory, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Cui Kong
- Department of Cardiovascular Disease, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Xiukui Wang
- Department of Stomatology, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Yinfeng Jia
- Clinic Laboratory, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Li Wang
- Department of Pharmocology, The First People's Hospital, Jining, Shandong Province, China
| | - Hong Chang
- Clinic Laboratory, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Lin Sun
- Department of Endocrinology, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| |
Collapse
|
6
|
Takeda Y, Shimomura T, Wakabayashi I. [Immunological disorders of diabetes mellitus in experimental rat models]. Nihon Eiseigaku Zasshi 2014; 69:166-176. [PMID: 25253518 DOI: 10.1265/jjh.69.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A comprehensive understanding of the pathogenic mechanism is the prerequisite for proper disease management. However, the mechanisms of diabetes mellitus and diabetic complication remain extremely complicated and unresolved. While immune reactions are involved in the pathogenesis of diabetes and diabetic complication, the diabetic condition itself can influence immune responses. Furthermore, both diabetes and immune reactions are regulated by genetic and environmental factors. As a result, animal models have evolved to be powerful research tools to elucidate the complicated mechanisms for the pathogenesis of diabetes. Recently, various animal models of diabetes have been developed in rats, which provide advantages over mouse models in the scale of tissue samples and variation in type 2 diabetes models. In this review, we introduced rat models of diabetes and summarized the immune reactions in diabetic rats to propose the relationship between immune reactions and diabetes. Type 1 diabetes is induced by self-reactive cellular immune reactions. On the other hand, type 2 diabetes in rat models is associated with augmentation of innate immune reactions and increased humoral immunity. For example, helper T (Th) 1/Th17 cells are prevalent in non-obese type 1 diabetes rats (diabetes-prone BioBreeding rats), while non-obese type 2 diabetes rats (Goto-Kakizaki rat) show higher levels of natural IgM and T cell ratios with elevated Th2 cells compared with Wister rats. The investigation of immunological disorders in various diabetic rat models is useful to elucidate complicated mechanisms for the pathophysiology of diabetes. In future studies, immunological experimentations altering Th1/Th17 or Th2 cell levels and natural immune reactions may lend support to understanding the causes of diabetes and predicting the pathological conditions in diabetes.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine
| | | | | |
Collapse
|
7
|
Kruger AJ, Yang C, Lipson KL, Pino SC, Leif JH, Hogan CM, Whalen BJ, Guberski DL, Lee Y, Unger RH, Greiner DL, Rossini AA, Bortell R. Leptin treatment confers clinical benefit at multiple stages of virally induced type 1 diabetes in BB rats. Autoimmunity 2010; 44:137-48. [PMID: 20695765 DOI: 10.3109/08916934.2010.482116] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adipokine, leptin, regulates blood glucose and the insulin secretory function of beta cells, while also modulating immune cell function. We hypothesized that the dual effects of leptin may prevent or suppress the autoreactive destruction of beta cells in a virally induced rodent model of type 1 diabetes. Nearly 100% of weanling BBDR rats treated with the combination of an innate immune system activator, polyinosinic:polycytidylic acid (pIC), and Kilham rat virus (KRV) become diabetic within a predictable time frame. We utilized this model to test the efficacy of leptin in preventing diabetes onset, remitting new onset disease, and preventing autoimmune recurrence in diabetic rats transplanted with syngeneic islet grafts. High doses of leptin delivered via an adenovirus vector (AdLeptin) or alzet pump prevented diabetes in>90% of rats treated with pIC+KRV. The serum hyperleptinemia generated by this treatment was associated with decreased body weight, decreased non-fasting serum insulin levels, and lack of islet insulitis in leptin-treated rats. In new onset diabetics, hyperleptinemia prevented rapid weight loss and diabetic ketoacidosis, and temporarily restored euglycemia. Leptin treatment also prolonged the survival of syngeneic islets transplanted into diabetic BBDR rats. In diverse therapeutic settings, we found leptin treatment to have significant beneficial effects in modulating virally induced diabetes. These findings merit further evaluation of leptin as a potential adjunct therapeutic agent for treatment of human type 1 diabetes.
Collapse
Affiliation(s)
- Annie J Kruger
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Askenasy EM, Askenasy N, Askenasy JJ. Does lymphopenia preclude restoration of immune homeostasis? The particular case of type 1 diabetes. Autoimmun Rev 2010; 9:687-90. [DOI: 10.1016/j.autrev.2010.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 05/24/2010] [Indexed: 11/27/2022]
|
9
|
van den Brandt J, Fischer HJ, Walter L, Hünig T, Klöting I, Reichardt HM. Type 1 diabetes in BioBreeding rats is critically linked to an imbalance between Th17 and regulatory T cells and an altered TCR repertoire. THE JOURNAL OF IMMUNOLOGY 2010; 185:2285-94. [PMID: 20644174 DOI: 10.4049/jimmunol.1000462] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes-prone BioBreeding (DP-BB) rats spontaneously develop type 1 diabetes mellitus (T1DM) on grounds of their MHC haplotype RT1(u) and a point mutation in the Gimap5 gene. In this study, we report that DP-BB rats exhibit an increasingly severe imbalance, in particular between Th17 and regulatory T (T(reg)) cells, within the first months of age. This can be assigned to an excess in effector T cells because neither the percentage nor the function of the T(reg) cells is compromised. Flow cytometric analysis of Vbeta segment usage and CDR3 spectratyping further suggest that the disturbed repertoire of peripheral T cells may also contribute to the development of T1DM in DP-BB rats. Importantly, expansion of T(reg) cells in vivo by means of a CD28 superagonistic Ab as well as adoptive transfer of T(reg) cells efficiently interferes with the development of T1DM in DP-BB rats, whereas treatment with conventional Th cells does not afford protection. Using a newly generated strain of enhanced GFP transgenic rats, we could further demonstrate that the transferred T(reg) cells persist in the recipient rats for several months and partially correct the imbalance between Th17 and T(reg) cells. Thus, our data support the hypothesis that unchecked effector T cell action and a disturbed T cell repertoire contribute to the development of T1DM in DP-BB rats, which may also have implications for a better understanding of the human disease.
Collapse
Affiliation(s)
- Jens van den Brandt
- Department of Cellular and Molecular Immunology, University of Göttingen Medical School, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Immunosuppressive therapy exacerbates autoimmunity in NOD mice and diminishes the protective activity of regulatory T cells. J Autoimmun 2010; 35:145-52. [PMID: 20638242 DOI: 10.1016/j.jaut.2010.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/13/2010] [Indexed: 01/29/2023]
Abstract
Mounting evidence indicates that immunosuppressive therapy and autologous bone marrow transplantation are relatively inefficient approaches to treat autoimmune diabetes. In this study we assessed the impact of immunosuppression on inflammatory insulitis in NOD mice, and the effect of radiation on immunomodulation mediated by adoptive transfer of various cell subsets. Sublethal radiation of NOD females at the age of 14 weeks (onset of hyperglycemia) delayed the onset of hyperglycemia, however two thirds of the mice became diabetic. Adoptive transfer of splenocytes into irradiated NON and NOD mice precipitated disease onset despite increased contents of CD25(+)FoxP3(+) T cells in the pancreas and regional lymphatics. Similar phenotypic changes were observed when CD25(+) T cells were infused after radiation, which also delayed disease onset without affecting its incidence. Importantly, irradiation increased the susceptibility to diabetes in NOD and NON mice (71-84%) as compared to immunomodulation with splenocytes and CD25(+) T cells in naïve recipients (44-50%). Although irradiation had significant and durable influence on pancreatic infiltrates and the fractions of functional CD25(+)FoxP3(+) Treg cells were elevated by adoptive cell transfer, this approach conferred no protection from disease progression. Irradiation was ineffective both in debulking of pathogenic clones and in restoring immune homeostasis, and the consequent homeostatic expansion evolves as an unfavorable factor in attempts to restore self-tolerance and might even provoke uncontrolled proliferation of pathogenic clones. The obstacles imposed by immunosuppression on abrogation of autoimmune insulitis require replacement of non-specific immunosuppressive therapy by selective immunomodulation that does not cause lymphopenia.
Collapse
|
11
|
Wallis RH, Wang K, Marandi L, Hsieh E, Ning T, Chao GY, Sarmiento J, Paterson AD, Poussier P. Type 1 diabetes in the BB rat: a polygenic disease. Diabetes 2009; 58:1007-17. [PMID: 19168599 PMCID: PMC2661594 DOI: 10.2337/db08-1215] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Two type 1 diabetes susceptibility genes have been identified in the spontaneously diabetic biobreeding diabetes-prone (BBDP) rat, the major histocompatibility complex (MHC) (RT1) class II u haplotype (Iddm1) and Gimap5 (Iddm2). The strong effects of these have impeded previous efforts to map additional loci. We tested the hypothesis that type 1 diabetes is a polygenic disease in the BBDP rat. RESEARCH DESIGN AND METHODS We performed the most comprehensive genome-wide linkage analysis for type 1 diabetes, age of disease onset (AOO), and insulitis subphenotypes in 574 F2 animals from a cross-intercross between BBDP and type 1 diabetes-resistant, double congenic ACI.BBDP-RT1u,Gimap5 (ACI.BB(1u.lyp)) rats, where both Iddm1 and Iddm2 were fixed as BBDP. RESULTS A total of 19% of these F2 animals developed type 1 diabetes, and eight type 1 diabetes susceptibility loci were mapped, six showing significant linkage (chromosomes 1, 3, 6 [two loci], 12, and 14) and two (chromosomes 2 and 17) suggestive linkage. The chromosomes 6, 12, and 14 intervals were also linked to the severity of islet infiltration by immunocytes, while those on chromosomes 1, 6 (two loci), 14, 17, and a type 1 diabetes-unlinked chromosome 8 interval showed significant linkage to the degree of islet atrophy. Four loci exhibited suggestive linkage to AOO on chromosomes 2 (two loci), 7, and 18 but were unlinked to type 1 diabetes. INS, PTPN22, IL2/IL21, C1QTNF6, and C12orf30, associated with human type 1 diabetes, are contained within the chromosomes 1, 2, 7, and 12 loci. CONCLUSIONS This study demonstrates that the BBDP diabetic syndrome is a complex, polygenic disease that may share additional susceptibility genes besides MHC class II with human type 1 diabetes.
Collapse
Affiliation(s)
- Robert H. Wallis
- Sunnybrook Health Sciences Centre Research Institute, Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; the
| | - KeSheng Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada; the
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, Tennessee; the
| | - Leili Marandi
- Sunnybrook Health Sciences Centre Research Institute, Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; the
| | - Eugene Hsieh
- Sunnybrook Health Sciences Centre Research Institute, Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; the
- Department of Laboratory Medicine and Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; and the
| | - Terri Ning
- Sunnybrook Health Sciences Centre Research Institute, Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; the
| | - Gary Y.C. Chao
- Sunnybrook Health Sciences Centre Research Institute, Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; the
| | - Janice Sarmiento
- Sunnybrook Health Sciences Centre Research Institute, Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; the
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada; the
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Philippe Poussier
- Sunnybrook Health Sciences Centre Research Institute, Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; the
- Corresponding author: Philippe Poussier,
| |
Collapse
|
12
|
Wallis RH, Wang K, Dabrowski D, Marandi L, Ning T, Hsieh E, Paterson AD, Mordes JP, Blankenhorn EP, Poussier P. A novel susceptibility locus on rat chromosome 8 affects spontaneous but not experimentally induced type 1 diabetes. Diabetes 2007; 56:1731-6. [PMID: 17389329 PMCID: PMC3987115 DOI: 10.2337/db06-1790] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The biobreeding diabetes-prone (BBDP) rat spontaneously develops type 1 diabetes. Two of the genetic factors contributing to this syndrome are the major histocompatibility complex (Iddm1) and a Gimap5 mutation (Iddm2) responsible for a T-lymphopenia. Susceptibility to experimentally induced type 1 diabetes is widespread among nonlymphopenic (wild-type Iddm2) rat strains provided they share the BBDP Iddm1 allele. The question follows as to whether spontaneous and experimentally induced type 1 diabetes share susceptibility loci besides Iddm1. Our objectives were to map a novel, serendipitously discovered Iddm locus, confirm its effects by developing congenic sublines, and assess its differential contribution to spontaneous and experimentally induced type 1 diabetes. RESEARCH DESIGN AND METHODS An unexpected reduction in spontaneous type 1 diabetes incidence (86 to 31%, P < 0.0001) was observed in a BBDP line congenic for a Wistar Furth-derived allotypic marker, RT7 (chromosome 13). Genome-wide analysis revealed that, besides the RT7 locus, a Wistar Furth chromosome 8 fragment had also been introduced. The contribution of these intervals to diabetes resistance was assessed through linkage analysis using 134 F2 (BBDP x double congenic line) animals and a panel of congenic sublines. One of these sublines, resistant to spontaneous type 1 diabetes, was tested for susceptibility to experimentally induced type 1 diabetes. RESULTS Both linkage analysis and congenic sublines mapped a novel locus (Iddm24) to the telomeric 10.34 Mb of chromosome 8, influencing cumulative incidence and age of onset of spontaneous type 1 diabetes but not insulitis nor experimentally induced type 1 diabetes. CONCLUSIONS This study has identified a type 1 diabetes susceptibility locus that appears to act after the development of insulitis and that regulates spontaneous type 1 diabetes exclusively.
Collapse
Affiliation(s)
- Robert H. Wallis
- Departments of Medicine and Immunology, Sunnybrook and Women's College Health Sciences Centre Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - KeSheng Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominika Dabrowski
- Departments of Medicine and Immunology, Sunnybrook and Women's College Health Sciences Centre Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Leili Marandi
- Departments of Medicine and Immunology, Sunnybrook and Women's College Health Sciences Centre Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Terri Ning
- Departments of Medicine and Immunology, Sunnybrook and Women's College Health Sciences Centre Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Eugene Hsieh
- Departments of Medicine and Immunology, Sunnybrook and Women's College Health Sciences Centre Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Public Health Sciences, University of Toronto, Toronto, Ontario, Canada
| | - John P. Mordes
- Diabetes Division, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Elisabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Philippe Poussier
- Departments of Medicine and Immunology, Sunnybrook and Women's College Health Sciences Centre Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Abstract
T1DM (Type I diabetes mellitus) results from selective destruction of the insulin-producing beta-cells of the pancreas by the immune system, and is characterized by hyperglycaemia and vascular complications arising from suboptimal control of blood glucose levels. The discovery of animal models of T1DM in the late 1970s and early 1980s, particularly the NOD (non-obese diabetic) mouse and the BB (BioBreeding) diabetes-prone rat, had a fundamental impact on our ability to understand the genetics, aetiology and pathogenesis of this disease. NOD and BB diabetes-prone rats spontaneously develop a form of diabetes that closely resembles the human counterpart. Early studies of these animals quickly led to the realization that T1DM is caused by autoreactive T-lymphocytes and revealed that the development of T1DM is controlled by numerous polymorphic genetic elements that are scattered throughout the genome. The development of transgenic and gene-targeting technologies during the 1980s allowed the generation of models of T1DM of reduced genetic and pathogenic complexity, and a more detailed understanding of the immunogenetics of T1DM. In this review, we summarize the contribution of studies in animal models of T1DM to our current understanding of four fundamental aspects of T1DM: (i) the nature of genetic elements affording T1DM susceptibility or resistance; (ii) the mechanisms underlying the development and recruitment of pathogenic autoreactive T-cells; (iii) the identity of islet antigens that contribute to the initiation and/or progression of islet inflammation and beta-cell destruction; and (iv) the design of avenues for therapeutic intervention that are rooted in the knowledge gained from studies of animal models. Development of new animal models will ensure continued progress in these four areas.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
14
|
Terrada C, Fisson S, De Kozak Y, Kaddouri M, Lehoang P, Klatzmann D, Salomon BL, Bodaghi B. Regulatory T cells control uveoretinitis induced by pathogenic Th1 cells reacting to a specific retinal neoantigen. THE JOURNAL OF IMMUNOLOGY 2006; 176:7171-9. [PMID: 16751360 DOI: 10.4049/jimmunol.176.12.7171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many clinical cases, uveitis develops secondary to an infection. This could result from peripheral activation followed by ocular penetration and reactivation of T cells specific for microbial Ags expressed in the retina. To gain insights into the pathophysiology of uveitis, we developed a new mouse model based on stable retinal expression of influenza virus hemagglutinin (HA) neoantigen by adeno-associated virus-mediated gene transfer. One month thereafter, we adoptively transferred HA-specific T cells, which were activated in vitro or in vivo. Intraocular inflammation was clinically and histologically observed in all animals within 15 days. The ocular infiltrate was composed mostly of macrophages and HA-specific T cells with a proinflammatory cytokine profile. Depletion of CD4(+)CD25(+) regulatory T cells exacerbated the disease, whereas HA-specific CD4(+)CD25(+) T cells given i.v. controlled the disease. This novel model should allow to better study the pathophysiology and therapeutic of uveitis.
Collapse
MESH Headings
- Animals
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Cell Movement/genetics
- Cell Movement/immunology
- Cytokines/biosynthesis
- Dependovirus/genetics
- Dependovirus/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Vectors/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Radiation Chimera
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Retina/immunology
- Retina/pathology
- Retina/virology
- Retinitis/immunology
- Retinitis/pathology
- Retinitis/prevention & control
- Retinitis/virology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- T-Lymphocytes, Regulatory/virology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th1 Cells/virology
- Uveitis/immunology
- Uveitis/pathology
- Uveitis/prevention & control
- Uveitis/virology
- Vitreous Body/immunology
Collapse
Affiliation(s)
- Céline Terrada
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7087 , Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lundsgaard D, Markholst H. A co-transfer system in young prediabetic BB rats: reactivated autoreactive T cells can be partly controlled. J Autoimmun 2004; 21:325-38. [PMID: 14624756 DOI: 10.1016/j.jaut.2003.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A transfer model for studying both the development and prevention of diabetes in rats is described in detail. Diabetes was induced in BBDR rats by combining RT6-depletion with PolyI:C treatment. Autoreactive cells were isolated from acutely diabetic donors, reactivated in vitro and transferred intravenously into young (<34-day-old) BBDP rats. Accelerated diabetes occurred 13+/-3 days or 18+/-4 days after transfer of reactivated splenocytes or purified T cells (42/43 or 26/27 recipients, respectively). Freshly isolated mesenteric and splenic leukocytes from adult, healthy BBDR rats prevented spontaneous diabetes in BBDP rats, but were not able to prevent the accelerated diabetes when co-transferred with the autoreactive cells. By contrast, diabetes was significantly delayed (P<0.001) when protective cells were transferred 4 days prior to the autoreactive cells (16+/-3 days). In vivo tracking studies of the two types of transferred cells suggest different homing patterns which may explain this finding. The data suggest that leukocytes from BBDR contain cells with the ability to regulate reactivated autoreactive T cells in an autoimmune environment. This in vivo model of recurrent diabetes can therefore be used to define which type of cells are most effective in suppressing established autoimmune destruction of beta-cells.
Collapse
Affiliation(s)
- Dorthe Lundsgaard
- Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | | |
Collapse
|
16
|
Affiliation(s)
- George S Eisenbarth
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | |
Collapse
|
17
|
Zalutskaya A, Bornstein SR, Mokhort T, Garmaev D. Did the Chernobyl incident cause an increase in Type 1 diabetes mellitus incidence in children and adolescents? Diabetologia 2004; 47:147-8. [PMID: 14658035 DOI: 10.1007/s00125-003-1271-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 10/13/2003] [Indexed: 01/10/2023]
|
18
|
Flodström-Tullberg M. Viral infections: their elusive role in regulating susceptibility to autoimmune disease. Microbes Infect 2003; 5:911-21. [PMID: 12919859 DOI: 10.1016/s1286-4579(03)00161-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Viral infections may trigger autoimmune disease. Complicating our understanding of how viral infections promote disease is the realization that viral infections can sometimes prevent auto-aggressive reactions. Here, we will discuss recent findings that provide insights into how viral infections may alter susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Malin Flodström-Tullberg
- Department of Medicine, The Karolinska Institute, Huddinge University Hospital, S-141 86 Stockholm, Sweden.
| |
Collapse
|
19
|
Current literature in diabetes. Diabetes Metab Res Rev 2003; 19:76-83. [PMID: 12592647 DOI: 10.1002/dmrr.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|