1
|
Chavosh Nejad M, Vestergaard Matthiesen R, Dukovska-Popovska I, Jakobsen T, Johansen J. Machine learning for predicting duration of surgery and length of stay: A literature review on joint arthroplasty. Int J Med Inform 2024; 192:105631. [PMID: 39293161 DOI: 10.1016/j.ijmedinf.2024.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION In recent years, different factors such as population aging have caused escalating demand for hip and knee arthroplasty straining already limited hospitals' resources. To address this challenge, focus is put on medical and operational efficiency improvements. This includes an increased use of machine learning (ML) to predict duration of surgery (DOS) and length of stay (LOS) for total knee and total hip arthroplasty, which can be utilized for optimizing resource allocation to satisfy medical and operational limitations. This paper explores the development and performance of ML models in predicting DOS and LOS. METHODS A systematic search of publications between 2010-2023 was conducted following PRISMA guidelines. Considering the inclusion and exclusion criteria, 28 out of 722 gathered papers from PubMed, Web of Science, and manual search were included in the study. Descriptive statistics was used to analyze the extracted data regarding data preprocessing, model development, and model performance assessment. RESULTS Most of the papers work on LOS as a binary variable. Patient's age was identified as the most frequently used and reported as important variable for predicting DOS and LOS. Investigations also illustrated that within the resulting 28 papers, more than 71% of models reached good to perfect performance based on the area under the receiver operating characteristic curve (AUC), where artificial neural networks and ensemble learning models had the biggest share among the best-performing models. CONCLUSION The utilization of ML models is increasing in the literature. The current performance level indicates that ML can potentially turn to powerful tools in predicting DOS and LOS for different purposes. Meanwhile, the literature is not matured yet in reporting real-life application. Future studies can focus on model specification and validation by considering empirical application.
Collapse
Affiliation(s)
- Mohammad Chavosh Nejad
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, 2-109, Aalborg Ø 9220, Danmark.
| | | | - Iskra Dukovska-Popovska
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, 2-107, Aalborg Ø 9220, Danmark.
| | - Thomas Jakobsen
- Department of Orthopaedics, Aalborg University Hospital, Hobrovej 18-22, Aalborg Universitetshospital, Aalborg Syd 9000, Danmark.
| | - John Johansen
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, 2-114, Aalborg Ø 9220, Danmark.
| |
Collapse
|
2
|
Longo UG, De Salvatore S, Valente F, Villa Corta M, Violante B, Samuelsson K. Artificial intelligence in total and unicompartmental knee arthroplasty. BMC Musculoskelet Disord 2024; 25:571. [PMID: 39034416 PMCID: PMC11265144 DOI: 10.1186/s12891-024-07516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
The application of Artificial intelligence (AI) and machine learning (ML) tools in total (TKA) and unicompartmental knee arthroplasty (UKA) emerges with the potential to improve patient-centered decision-making and outcome prediction in orthopedics, as ML algorithms can generate patient-specific risk models. This review aims to evaluate the potential of the application of AI/ML models in the prediction of TKA outcomes and the identification of populations at risk.An extensive search in the following databases: MEDLINE, Scopus, Cinahl, Google Scholar, and EMBASE was conducted using the PIOS approach to formulate the research question. The PRISMA guideline was used for reporting the evidence of the data extracted. A modified eight-item MINORS checklist was employed for the quality assessment. The databases were screened from the inception to June 2022.Forty-four out of the 542 initially selected articles were eligible for the data analysis; 5 further articles were identified and added to the review from the PUBMED database, for a total of 49 articles included. A total of 2,595,780 patients were identified, with an overall average age of the patients of 70.2 years ± 7.9 years old. The five most common AI/ML models identified in the selected articles were: RF, in 38.77% of studies; GBM, in 36.73% of studies; ANN in 34.7% of articles; LR, in 32.65%; SVM in 26.53% of articles.This systematic review evaluated the possible uses of AI/ML models in TKA, highlighting their potential to lead to more accurate predictions, less time-consuming data processing, and improved decision-making, all while minimizing user input bias to provide risk-based patient-specific care.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Rome, 200 - 00128, Italy.
- Department of Medicine and Surgery, Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, Rome, 21 - 00128, Italy.
| | - Sergio De Salvatore
- IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Orthopedic Unit, Department of Surgery, Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica Valente
- Department of Medicine and Surgery, Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, Rome, 21 - 00128, Italy
| | - Mariajose Villa Corta
- Department of Medicine and Surgery, Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, Rome, 21 - 00128, Italy
| | - Bruno Violante
- Orthopaedic Department, Clinical Institute Sant'Ambrogio, IRCCS - Galeazzi, Milan, Italy
| | - Kristian Samuelsson
- Department of Medicine and Surgery, Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, Rome, 21 - 00128, Italy
| |
Collapse
|
3
|
Michelsen C, Jørgensen CC, Heltberg M, Jensen MH, Lucchetti A, Petersen PB, Petersen T, Kehlet H, Madsen F, Hansen TB, Gromov K, Jakobsen T, Varnum C, Overgaard S, Rathsach M, Hansen L. Machine-learning vs. logistic regression for preoperative prediction of medical morbidity after fast-track hip and knee arthroplasty-a comparative study. BMC Anesthesiol 2023; 23:391. [PMID: 38030979 PMCID: PMC10685559 DOI: 10.1186/s12871-023-02354-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Machine-learning models may improve prediction of length of stay (LOS) and morbidity after surgery. However, few studies include fast-track programs, and most rely on administrative coding with limited follow-up and information on perioperative care. This study investigates potential benefits of a machine-learning model for prediction of postoperative morbidity in fast-track total hip (THA) and knee arthroplasty (TKA). METHODS Cohort study in consecutive unselected primary THA/TKA between 2014-2017 from seven Danish centers with established fast-track protocols. Preoperative comorbidity and prescribed medication were recorded prospectively and information on length of stay and readmissions was obtained through the Danish National Patient Registry and medical records. We used a machine-learning model (Boosted Decision Trees) based on boosted decision trees with 33 preoperative variables for predicting "medical" morbidity leading to LOS > 4 days or 90-days readmissions and compared to a logistical regression model based on the same variables. We also evaluated two parsimonious models, using the ten most important variables in the full machine-learning and logistic regression models. Data collected between 2014-2016 (n:18,013) was used for model training and data from 2017 (n:3913) was used for testing. Model performances were analyzed using precision, area under receiver operating (AUROC) and precision recall curves (AUPRC), as well as the Mathews Correlation Coefficient. Variable importance was analyzed using Shapley Additive Explanations values. RESULTS Using a threshold of 20% "risk-patients" (n:782), precision, AUROC and AUPRC were 13.6%, 76.3% and 15.5% vs. 12.4%, 74.7% and 15.6% for the machine-learning and logistic regression model, respectively. The parsimonious machine-learning model performed better than the full logistic regression model. Of the top ten variables, eight were shared between the machine-learning and logistic regression models, but with a considerable age-related variation in importance of specific types of medication. CONCLUSION A machine-learning model using preoperative characteristics and prescriptions slightly improved identification of patients in high-risk of "medical" complications after fast-track THA and TKA compared to a logistic regression model. Such algorithms could help find a manageable population of patients who may benefit most from intensified perioperative care.
Collapse
Affiliation(s)
- Christian Michelsen
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Christoffer C Jørgensen
- Department of Anesthesia and Intensive Care, Hospital of Northern Zealand, Dyrehavevej 29 3400, Hillerød, Denmark.
- The Centre for Fast-Track Hip and Knee Replacement, 7621, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Mathias Heltberg
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Mogens H Jensen
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Alessandra Lucchetti
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Pelle B Petersen
- Department of Anesthesia and Intensive Care, Hospital of Northern Zealand, Dyrehavevej 29 3400, Hillerød, Denmark
- The Centre for Fast-Track Hip and Knee Replacement, 7621, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Troels Petersen
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Henrik Kehlet
- The Centre for Fast-Track Hip and Knee Replacement, 7621, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Section of Surgical Pathophysiology, 7621, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kurmis AP. A role for artificial intelligence applications inside and outside of the operating theatre: a review of contemporary use associated with total knee arthroplasty. ARTHROPLASTY 2023; 5:40. [PMID: 37400876 DOI: 10.1186/s42836-023-00189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI) has become involved in many aspects of everyday life, from voice-activated virtual assistants built into smartphones to global online search engines. Similarly, many areas of modern medicine have found ways to incorporate such technologies into mainstream practice. Despite the enthusiasm, robust evidence to support the utility of AI in contemporary total knee arthroplasty (TKA) remains limited. The purpose of this review was to provide an up-to-date summary of the use of AI in TKA and to explore its current and future value. METHODS Initially, a structured systematic review of the literature was carried out, following PRISMA search principles, with the aim of summarising the understanding of the field and identifying clinical and knowledge gaps. RESULTS A limited body of published work exists in this area. Much of the available literature is of poor methodological quality and many published studies could be best described as "demonstration of concepts" rather than "proof of concepts". There exists almost no independent validation of reported findings away from designer/host sites, and the extrapolation of key results to general orthopaedic sites is limited. CONCLUSION While AI has certainly shown value in a small number of specific TKA-associated applications, the majority to date have focused on risk, cost and outcome prediction, rather than surgical care, per se. Extensive future work is needed to demonstrate external validity and reliability in non-designer settings. Well-performed studies are warranted to ensure that the scientific evidence base supporting the use of AI in knee arthroplasty matches the global hype.
Collapse
Affiliation(s)
- Andrew P Kurmis
- Discipline of Medical Specialties, University of Adelaide, Adelaide, SA, 5005, Australia.
- Department of Orthopaedic Surgery, Lyell McEwin Hospital, Haydown Road, Elizabeth Vale, SA, 5112, Australia.
- College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
5
|
Hu H, Cai J, Qi D, Li B, Yu L, Wang C, Bajpai AK, Huang X, Zhang X, Lu L, Liu J, Zheng F. Identification of Potential Biomarkers for Group I Pulmonary Hypertension Based on Machine Learning and Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24098050. [PMID: 37175757 PMCID: PMC10178909 DOI: 10.3390/ijms24098050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
A number of processes and pathways have been reported in the development of Group I pulmonary hypertension (Group I PAH); however, novel biomarkers need to be identified for a better diagnosis and management. We employed a robust rank aggregation (RRA) algorithm to shortlist the key differentially expressed genes (DEGs) between Group I PAH patients and controls. An optimal diagnostic model was obtained by comparing seven machine learning algorithms and was verified in an independent dataset. The functional roles of key DEGs and biomarkers were analyzed using various in silico methods. Finally, the biomarkers and a set of key candidates were experimentally validated using patient samples and a cell line model. A total of 48 key DEGs with preferable diagnostic value were identified. A gradient boosting decision tree algorithm was utilized to build a diagnostic model with three biomarkers, PBRM1, CA1, and TXLNG. An immune-cell infiltration analysis revealed significant differences in the relative abundances of seven immune cells between controls and PAH patients and a correlation with the biomarkers. Experimental validation confirmed the upregulation of the three biomarkers in Group I PAH patients. In conclusion, machine learning and a bioinformatics analysis along with experimental techniques identified PBRM1, CA1, and TXLNG as potential biomarkers for Group I PAH.
Collapse
Affiliation(s)
- Hui Hu
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jie Cai
- Department of Cardial Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Daoxi Qi
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Boyu Li
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li Yu
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Wang
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Akhilesh K Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Xiaoqin Huang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Jinping Liu
- Department of Cardial Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Entezari B, Koucheki R, Abbas A, Toor J, Wolfstadt JI, Ravi B, Whyne C, Lex JR. Improving Resource Utilization for Arthroplasty Care by Leveraging Machine Learning and Optimization: A Systematic Review. Arthroplast Today 2023; 20:101116. [PMID: 36938350 PMCID: PMC10014272 DOI: 10.1016/j.artd.2023.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 03/21/2023] Open
Abstract
Background There is a growing demand for total joint arthroplasty (TJA) surgery. The applications of machine learning (ML), mathematical optimization, and computer simulation have the potential to improve efficiency of TJA care delivery through outcome prediction and surgical scheduling optimization, easing the burden on health-care systems. The purpose of this study was to evaluate strategies using advances in analytics and computational modeling that may improve planning and the overall efficiency of TJA care. Methods A systematic review including MEDLINE, Embase, and IEEE Xplore databases was completed from inception to October 3, 2022, for identification of studies generating ML models for TJA length of stay, duration of surgery, and hospital readmission prediction. A scoping review of optimization strategies in elective surgical scheduling was also conducted. Results Twenty studies were included for evaluating ML predictions and 17 in the scoping review of scheduling optimization. Among studies generating linear or logistic control models alongside ML models, only 1 found a control model to outperform its ML counterpart. Furthermore, neural networks performed superior to or at the same level as conventional ML models in all but 1 study. Implementation of mathematical and simulation strategies improved the optimization efficiency when compared to traditional scheduling methods at the operational level. Conclusions High-performing predictive ML-based models have been developed for TJA, as have mathematical strategies for elective surgical scheduling optimization. By leveraging artificial intelligence for outcome prediction and surgical optimization, there exist greater opportunities for improved resource utilization and cost-savings in TJA than when using traditional modeling and scheduling methods.
Collapse
Affiliation(s)
- Bahar Entezari
- Granovsky Gluskin Division of Orthopaedics, Mount Sinai Hospital, Toronto, Ontario, Canada
- Queen’s University School of Medicine, Kingston, Ontario, Canada
- Corresponding author. Mount Sinai Hospital, 15 Arch Street, Kingston, Ontario, Canada K7L 3N6. Tel.: +1 647 866 8729.
| | - Robert Koucheki
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Aazad Abbas
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jay Toor
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jesse I. Wolfstadt
- Granovsky Gluskin Division of Orthopaedics, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bheeshma Ravi
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Holland Bone and Joint Program, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | - Cari Whyne
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Holland Bone and Joint Program, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | - Johnathan R. Lex
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Is It Possible to Predict the Length of Stay of Patients Undergoing Hip-Replacement Surgery? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106219. [PMID: 35627755 PMCID: PMC9141454 DOI: 10.3390/ijerph19106219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022]
Abstract
The proximal fracture of the femur and hip is the most common reason for hospitalization in orthopedic departments. In Italy, 115,989 hip-replacement surgeries were performed in 2019, showing the economic relevance of studying this type of procedure. This study analyzed the data relating to patients who underwent hip-replacement surgery in the years 2010-2020 at the "San Giovanni di Dio e Ruggi d'Aragona" University Hospital of Salerno. The multiple linear regression (MLR) model and regression and classification algorithms were implemented in order to predict the total length of stay (LOS). Lastly, using a statistical analysis, the impact of COVID-19 was evaluated. The results obtained from the regression analysis showed that the best model was MLR, with an R2 value of 0.616, compared with XGBoost, Gradient-Boosted Tree, and Random Forest, with R2 values of 0.552, 0.543, and 0.448, respectively. The t-test showed that the variables that most influenced the LOS, with the exception of pre-operative LOS, were gender, age, anemia, fracture/dislocation, and urinary disorders. Among the classification algorithms, the best result was obtained with Random Forest, with a sensitivity of the longest LOS of over 89%. In terms of the overall accuracy, Random Forest and Gradient-Boosted Tree achieved a value of 71.76% and an error of 28.24%, followed by Decision Tree, with an accuracy of 71.13% and an error of 28.87%, and, finally, Support Vector Machine, with an accuracy of 65.06% and an error of 34.94%. A significant difference in cardiovascular disease, fracture/dislocation, and post-operative LOS variables was shown by the chi-squared test and Mann-Whitney test in the comparison between 2019 (before COVID-19) and 2020 (in full pandemic emergency conditions).
Collapse
|