1
|
Zhou Z, Guo D, Watts DC, Fischer NG, Fu J. Application and limitations of configuration factor (C-factor) in stress analysis of dental restorations. Dent Mater 2023; 39:1137-1149. [PMID: 37838610 DOI: 10.1016/j.dental.2023.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE The configuration factor (C-factor) is an index used to evaluate the relationship between cavity configuration and the development of polymerization shrinkage stress in dental restorations. Although C-factor has been widely researched, its correlation with stress analysis in dental restorations remains controversial. This review aims to discuss the application and limitations of C-factor and define the restricted conditions under which the C-factor "rule of thumb" is applicable. METHODS A thorough literature review was conducted on the application and limitations of C-factor in stress analysis of dental restorations. This was principally based on MEDLINE/PubMed and Web of Science databases and a review of the relevant studies and publications in scientific papers in international peer-reviewed journals for the specific topic of C-factor and polymerization shrinkage. RESULTS The C-factor alone cannot provide an accurate prediction of the shrinkage stress of restorations and the mechanical behavior of material-tooth interfaces. C-factor is only applicable under one condition not typically seen in clinical practice: low, near-rigid compliance. SIGNIFICANCE Conditions for the application of C-factor have been explicitly defined. A more accurate and precise understanding and utilization of the C-factor is of benefit as it contributes to better understanding of polymerization shrinkage behavior of restorations.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, 266000 Qingdao, China; School of Stomatology of Qingdao University, 266003 Qingdao, China
| | - Di Guo
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, 266000 Qingdao, China; School of Stomatology of Qingdao University, 266003 Qingdao, China
| | - David C Watts
- University of Manchester, School of Medical Sciences, Oxford Road, M13 9PL Manchester, UK
| | - Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jing Fu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, 266000 Qingdao, China; School of Stomatology of Qingdao University, 266003 Qingdao, China.
| |
Collapse
|
2
|
Fidalgo-Pereira R, Torres O, Carvalho Ó, Silva FS, Catarino SO, Özcan M, Souza JCM. A Scoping Review on the Polymerization of Resin-Matrix Cements Used in Restorative Dentistry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1560. [PMID: 36837188 PMCID: PMC9961405 DOI: 10.3390/ma16041560] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In dentistry, clinicians mainly use dual-cured or light-cured resin-matrix cements to achieve a proper polymerization of the organic matrix leading to enhanced physical properties of the cement. However, several parameters can affect the polymerization of resin-matrix cements. The main aim of the present study was to perform a scoping review on the degree of conversion (DC) of the organic matrix, the polymerization, and the light transmittance of different resin-matrix cements used in dentistry. A search was performed on PubMed using a combination of the following key terms: degree of conversion, resin cements, light transmittance, polymerization, light curing, and thickness. Articles in the English language published up to November 2022 were selected. The selected studies' results demonstrated that restorative structures with a thickness higher than 1.5 mm decrease the light irradiance towards the resin-matrix cement. A decrease in light transmission provides a low energy absorption through the resin cement leading to a low DC percentage. On the other hand, the highest DC percentages, ranging between 55 and 75%, have been reported for dual-cured resin-matrix cements, although the polymerization mode and exposure time also influence the DC of monomers. Thus, the polymerization of resin-matrix cements can be optimized taking into account different parameters of light-curing, such as adequate light distance, irradiance, exposure time, equipment, and wavelength. Then, optimum physical properties are achieved that provide a long-term clinical performance of the cemented restorative materials.
Collapse
Affiliation(s)
- Rita Fidalgo-Pereira
- University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505 Viseu, Portugal
| | - Orlanda Torres
- University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| | - Filipe S. Silva
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| | - Susana O. Catarino
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| | - Mutlu Özcan
- Division of Dental Biomaterials, Center of Dental Medicine, Clinic of Reconstructive Dentistry, University of Zurich, 8032 Zurich, Switzerland
| | - Júlio C. M. Souza
- University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| |
Collapse
|
3
|
Influence of surface treatment and curing mode of resin composite cements on fibroblast behavior. Head Face Med 2022; 18:18. [PMID: 35690829 PMCID: PMC9188230 DOI: 10.1186/s13005-022-00323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human gingival fibroblast (HGF-1) cells in the connective tissue provide an effective barrier between the alveolar bone and the oral environment. Cement margins of restorations with intrasulcular preparation or cemented implant restorations are in contact with HGF cells. However, it is unknown to what extend the cement surface finish affects the behavior of HGF cells. The purpose of this study was to compare the behavior of HGF-1 cells in contact with two different resin composite cements with three different surface treatments after light-curing and autopolymerization, respectively. METHODS Disks of one adhesive (Multilink Automix, Ivoclar Vivadent [MLA]) and one self-adhesive (RelyX Unicem 2 Automix, 3 M [RUN]) resin composite cement were either light-cured or autopolymerized. Specimen surfaces were prepared with the oxygen inhibition layer intact, polished with P2500-grit silicon carbide paper or treated with a scaler. Cells were cultivated on the specimens for 24 h. Viability assay was performed, and cell morphology was examined with scanning electron microscopy. Additionally, roughness parameters of the specimen were analyzed with a 3D laser scanning microscope. Three-way ANOVA was applied to determine the effect of cement material, curing mode and surface treatment (a = 0.05). RESULTS Overall, cement material (p = 0.031), curing mode (p = 0.001), and surface treatment (p < 0.001) significantly affected relative cell viability of HGF. The autopolymerized specimen with the oxygen inhibition layer left intact displayed the lowest relative cell viability (MLA 25.7%, RUN 46.6%). Removal of the oxygen inhibition layer with a scaler increased cell viability but also resulted in higher surface roughness values. CONCLUSIONS HGF cell viability is affected by the surface treatment and the curing mode. The oxygen inhibition layer is an inhibitory factor for the viability of HGF cells. Autopolymerization enhances the cytotoxic potential of the oxygen inhibition layer.
Collapse
|
4
|
Abstract
The objective of this study was to analyze the viscous behavior during setting reaction of resin composite cements and how it is influenced by temperature. Viscous properties during auto-polymerization at 23°C of three adhesive (Panavia V5 [PV5]; RelyX Ultimate [RUL]; Multilink Automix [MLA]) and three self-adhesive (Panavia SA plus [PSA]; RelyX Unicem 2 Automix [RUN]; Multilink SpeedCem [MSC]) resin composite cements were rheometrically measured. Changes in contact angle and temperature during auto-polymerization were evaluated for each cement at 23°C and 37°C. Rheological analysis and temperature measurements corresponded in terms of curve progression. The tested resin composite cements demonstrated strong variations in their viscous behavior during setting reaction. PV5 and PSA become less viscous at 37°C and then polymerize quickly. For RUL and RUN at 37°C, viscosity rises, and polymerization takes place quickly. MLA and MSC start with high viscosity, then MSC polymerizes very fast and MLA rather slowly.
Collapse
Affiliation(s)
- Daniela K Zeller
- Division of Dental Materials and Engineering, Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel
| | - Jens Fischer
- Division of Dental Materials and Engineering, Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel
| | - Nadja Rohr
- Division of Dental Materials and Engineering, Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel
| |
Collapse
|
5
|
Aung SSMP, Takagaki T, Ko AK, Halabi S, Sato T, Ikeda M, Nikaido T, Burrow MF, Tagami J. Adhesion durability of dual-cure resin cements and acid–base resistant zone formation on human dentin. Dent Mater 2019; 35:945-952. [DOI: 10.1016/j.dental.2019.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/13/2019] [Indexed: 12/01/2022]
|