Hubert TL, Lindemann R, Wu J, Agnew C, Shaffer TH, Wolfson MR. Prototype hybrid systems for neonatal warming: in vitro comparisons to standard of care devices.
Biomed Instrum Technol 2010;
44:523-7. [PMID:
21142524 DOI:
10.2345/0899-8205-44.6.523]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Preterm infants lack necessary thermoregulation. An ideal incubator should maintain a uniform and constant thermal environment. We compared the effectiveness of a supplemental heating blanket to improve the heating characteristics of two different incubator warming devices using assessment of their respective function alone as controls. Device A and device B, with and without a heating blanket (Harvard Apparatus), were instrumented with a distribution matrix of multiple temperature (n = 11) and humidity probes. These data were serially measured during warm up to 37.5 °C and through a series of open-door perturbations. The time constant, temperature variation, and change in air temperature were calculated. Data were analyzed for significance by 2-factor ANOVA for each respective incubator either turned on or off with either the heating blanket turned on or off. Device A warms faster (33.87% ; p < 0.05) than device B, but has a greater (37.27% ; p < 0.05) temperature variation during warmup. The heating blanket enhances the thermal response of device A during warmup, but does not alter those of device B. With the side door open, device A shows a smaller (-16.5% ; p < 0.05) temperature variation than device B; the heating blanket attenuates the temperature change in both devices. These results demonstrate that the use of a supplemental heating blanket, as well as device-related differences, may impact clinical control of a thermal environment.
Collapse