1
|
Sharma R, Ali T, Kaur J. Folic acid depletion as well as oversupplementation helps in the progression of hepatocarcinogenesis in HepG2 cells. Sci Rep 2022; 12:16617. [PMID: 36198749 PMCID: PMC9534894 DOI: 10.1038/s41598-022-21084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Folate ingestion below and above the physiologic dose has been shown to play a tumorigenic role in certain cancers. Also, excessive folate supplementation after establishment of pre-established lesions led to an advancement in the growth of a few tumors. However, such information has not yet been achieved in the case of HCC. In our study, HepG2 cells were administered with three different concentrations of folic acid i.e. folic acid normal (FN) (2.27 µM), folic acid deficient (FD) (no folic acid), folic acid oversupplementation (FO) (100 µM) for 10 days. Intracellular folate levels were assayed by Elecsys Folate III kit based method. The migratory and invasive abilities were estimated by transwell migration and matrigel invasion methods respectively. FACS was done to evaluate cell viability and apoptosis. Agarose-coated plates were used to access cancer stem cells (CSCs) number. Quantitative RT-PCR and western blotting approaches were used for gene and protein expression of certain tumor suppressor genes (TSGs), respectively. FD cells depicted increased migration, invasion, apoptosis, necrosis and decreased cell viability, CSCs. On the other hand, FO cells showed increased migration, invasion, cell viability and number of CSCs and decreased apoptosis and necrosis. TSGs revealed diminished expression with both FA modulations with respect to FN cells. Thus, FA deficiency as well as abundance enhanced the HCC progression by adapting different mechanisms.
Collapse
Affiliation(s)
- Renuka Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Taqveema Ali
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India.
| |
Collapse
|
2
|
Chen WT, Hsu FT, Liu YC, Chen CH, Hsu LC, Lin SS. Fluoxetine Induces Apoptosis through Extrinsic/Intrinsic Pathways and Inhibits ERK/NF-κB-Modulated Anti-Apoptotic and Invasive Potential in Hepatocellular Carcinoma Cells In Vitro. Int J Mol Sci 2019; 20:ijms20030757. [PMID: 30754643 PMCID: PMC6386946 DOI: 10.3390/ijms20030757] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
The aim of the present study was to verify the effects of fluoxetine on dysregulation of apoptosis and invasive potential in human hepatocellular carcinoma (HCC) SK-Hep1 and Hep3B cells. Cells were treated with different concentrations of fluoxetine for different times. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used for testing the effects of fluoxetine on cell viability. The regulation of apoptosis signaling, and anti-apoptotic, proliferation, and metastasis-associated proteins after fluoxetine treatment were assayed by flow cytometry and Western blotting assay. The detection of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation after fluoxetine treatment was performed by NF-κB reporter gene assay. The results demonstrated that fluoxetine significantly reduced cell viability, cell migration/invasion, NF-κB, extracellular signal-regulated kinases (ERK) activation, and expression of anti-apoptotic (Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (C-FLIP), Myeloid cell leukemia-1 (MCL-1), X-Linked inhibitor of apoptosis protein (XAIP), and Survivin), proliferation (Cyclin-D1), angiogenesis (vascular endothelial growth factor (VEGF)), and metastasis-associated proteins (matrix metalloproteinase-9 (MMP-9)). Fluoxetine also significantly induced apoptosis, unregulated extrinsic (activation of first apoptosis signal protein and ligand (Fas/FasL), and caspase-8) and intrinsic (loss of mitochondrial membrane potential (ΔΨm) pathways and increased Bcl-2 homologous antagonist killer (BAK) apoptosis signaling. Taken together, these results demonstrated that fluoxetine induced apoptosis through extrinsic/intrinsic pathways and diminished ERK/NF-κB-modulated anti-apoptotic and invasive potential in HCC cells in vitro.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
- Department of Psychiatry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan.
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan.
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
| | - Yu-Chang Liu
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan.
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Cheng-Hsien Chen
- Department of Surgery, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Li-Cho Hsu
- Division of Endocrinology and Metabolism, Department of Medicine, National Yang-Ming University Hospital, Yilan 260, Taiwan.
| | - Song-Shei Lin
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan.
| |
Collapse
|
3
|
MiR-1180 promotes apoptotic resistance to human hepatocellular carcinoma via activation of NF-κB signaling pathway. Sci Rep 2016; 6:22328. [PMID: 26928365 PMCID: PMC4772113 DOI: 10.1038/srep22328] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/03/2016] [Indexed: 11/27/2022] Open
Abstract
Apoptosis resistance in human hepatocellular carcinoma (HCC) is a significant factor in carcinogenesis. Therefore, understanding the molecular mechanisms involved in apoptosis resistance is crucial for developing anticancer therapies. Importantly, small non-coding microRNAs (miRNAs) have been reported as key biomarkers for detecting tumour onset and progression. In the present study, we demonstrate that miR-1180 is upregulated in HCC. Ectopic expression of miR-1180 has an anti-apoptotic effect in HCC, while miR-1180 inhibition increases cell apoptosis, both in vitro and in vivo. Moreover, our results show that miR-1180 directly targets key inhibitors of the nuclear factor (NF)-κB signaling pathway (i.e., OTUD7B and TNIP2) and the pro-apoptotic Bcl-2 associated death promoter (BAD) protein by post-transcriptional downregulation. Therefore, the anti-apoptotic function of miR-1180 in HCC may occur through NF-κB pathway activation via downregulation of its negative regulators. In conclusion, our study reveals the critical role of miR-1180 during apoptosis resistance in HCC.
Collapse
|
4
|
Xie SL, Zhu MG, Chen GF, Wang GY, Lv GY. Effects of Ras homolog gene family, member C gene silencing combined with rapamycin on hepatocellular carcinoma cell growth. Mol Med Rep 2015; 12:5077-85. [PMID: 26165487 PMCID: PMC4581818 DOI: 10.3892/mmr.2015.4056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the combined effects of inhibiting the Ras homolog gene family, member C (RhoC)/Rho kinase and phosphoinositide 3 kinase/Akt/mammalian target of rapamycin (mTOR) pathways on hepatocellular carcinoma cell growth. The RhoC gene was silenced by RNA interference (RNAi) and mTOR was inhibited by rapamycin (RAPA). Subsequently, an MTT assay for cell growth detection, western blot analysis for gene expression analysis, silver nitrate staining for cell proliferation, Wright's staining for analysis of the apoptotic rate analysis, soft agar clonogenic assay for the determination of cell growth characteristics and a Transwell assay for cell migration were performed. RhoC expression in hepatoma cell lines was lower than that in the HL7702 normal human liver cell line. The level of cell proliferation in the RNAi + RAPA group was lower than that in the RNAi, RAPA and Scramble groups. The levels of cyclin‑dependent kinase 2 in the RNAi + RAPA group were lower than those in the other groups, while the levels of P16 in the RNAi + RAPA group were higher than those in the other experimental groups. No significant difference was found between the RNAi + RAPA and the normal HL7702 group. The number of silver nitrate‑stained particles was reduced in the RNAi + RAPA group compared with that in the other groups. No significant difference was found between the RNAi + RAPA and HL7702 groups. Wright's staining for apoptosis demonstrated that apoptosis in the Scramble group was rare, while the RAPA and RNAi groups contained a large number of apoptotic cells, which displayed nuclear condensation, fragmentation, deepened staining, as well as a wrinkled membrane. B‑cell lymphoma‑2 (Bcl‑2) expression in the RNAi + RAPA group was lower than that in the other groups, while the gene expression of Bcl‑2‑associated X protein in the RNAi + RAPA group was increased compared with that in the other groups. No cell colony formation was observed in the soft agar cloning experiment in the RNAi + RAPA and HL7702 group, while in the other groups, visible cell clones appeared. In the Transwell assay the number of migrated cells in the RNAi + RAPA group was lower than that in the other groups. The gene expression of matrix metalloproteinase (MMP)2, MMP‑9 and vascular endothelial growth factor in the RNAi + RAPA group was lower than that in the other experimental groups. In conclusion, RhoC gene silencing combined with RAPA was able to significantly inhibit the growth of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Shu-Li Xie
- Department of General Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming-Guang Zhu
- Department of Immunology, Basic Medical College of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guo-Fu Chen
- Department of General Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Yi Wang
- Department of General Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guo-Yue Lv
- Department of General Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Yan J, Zhou Y, Chen D, Li L, Yang X, You Y, Ling X. Impact of mitochondrial telomerase over-expression on drug resistance of hepatocellular carcinoma. Am J Transl Res 2015; 7:88-99. [PMID: 25755831 PMCID: PMC4346526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND The efficacy of chemotherapy in patients with hepatocellular carcinomas still poor due to multidrug resistance. This study aimed to investigate the impact of the over-expressed mitochondrial human telomerase reverse transcriptase on multidrug resistance of hepatocellular carcinomas. METHODS HepG2 and SK-Hep1 cell lines were used. And sensitivity to chemotherapeutic drugs was detected. RESULTS Mitochondrial human telomerase reverse transcriptase over-expression in hepatocellular carcinomas cells could significantly reduce its sensitivity to multiple chemotherapeutic drugs in vitro and in vivo. Hepatocellular carcinomas cells over-expressing mitochondrial human telomerase reverse transcriptase showed a significantly higher mitochondrial membrane potential, a markedly lower activated caspase-3 after drug treatment, and an increased mtDNA copy number, which explained the drastically decreased drug-induced apoptosis of hepatocellular carcinomas cells with mitochondrial human telomerase reverse transcriptase over-expression. CONCLUSION Over-expressed mitochondrial human telomerase reverse transcriptase may increase the mtDNA copy number and inhibit the activation of mitochondrial apoptotic pathway to contribute to the multidrug resistance of hepatocellular carcinomas cells.
Collapse
Affiliation(s)
- Jing Yan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University No. 83 Xiqiaozheng Street, Chongqing 400037, China
| | - Yuan Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University No. 83 Xiqiaozheng Street, Chongqing 400037, China
| | - Daixing Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University No. 83 Xiqiaozheng Street, Chongqing 400037, China
| | - Lili Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University No. 83 Xiqiaozheng Street, Chongqing 400037, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University No. 83 Xiqiaozheng Street, Chongqing 400037, China
| | - Yang You
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University No. 83 Xiqiaozheng Street, Chongqing 400037, China
| | - Xianlong Ling
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University No. 83 Xiqiaozheng Street, Chongqing 400037, China
| |
Collapse
|
6
|
Wang Y, Zheng WL, Ma WL. Lobaplatin inhibits the proliferation of hepatollular carcinoma through p53 apoptosis axis. HEPATITIS MONTHLY 2012; 12:e6024. [PMID: 23193415 PMCID: PMC3500997 DOI: 10.5812/hepatmon.6024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ying Wang
- Institute of Genetics Engineering, South Medical University, Tonghe, Guangzhou, China
| | - Wen-Ling Zheng
- Institute of Genetics Engineering, South Medical University, Tonghe, Guangzhou, China
| | - Wen-Li Ma
- Institute of Genetics Engineering, South Medical University, Tonghe, Guangzhou, China
- Corresponding author: Wen-Li Ma, Institute of Genetics Engineering, South Medical University, Tonghe, Guangzhou 510515, P. R, Guangzhou, China. Tel.: +86-2062789384, Fax: +86-2062789098, E-mail:
| |
Collapse
|