1
|
Chiangjong W, Panachan J, Keadsanti S, Newburg DS, Morrow AL, Hongeng S, Chutipongtanate S. Development of red blood cell-derived extracellular particles as a biocompatible nanocarrier of microRNA-204 (REP-204) to harness anti-neuroblastoma effect. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102760. [PMID: 38852882 DOI: 10.1016/j.nano.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in the pediatric population with a high degree of heterogeneity in clinical outcomes. Upregulation of the tumor suppressor miR-204 in neuroblastoma is associated with good prognosis. Although miR-204 has been recognized as a potential therapeutic candidate, its delivery is unavailable. We hypothesized that REP-204, the red blood cell-derived extracellular particles (REP) with miR-204 loading, can suppress neuroblastoma cells in vitro. After miR-204 loading by electroporation, REP-204, but not REP carriers, inhibited the viability, migration, and 3D spheroid growth of neuroblastoma cells regardless of MYCN amplification status. SWATH-proteomics revealed that REP-204 treatment may trigger a negative regulation of mRNA splicing by the spliceosome, suppression of amino acid metabolism and protein production, and prevent SLIT/ROBO signaling-mediated cell migration, to halt neuroblastoma tumor growth and metastasis. The therapeutic efficacy of REP-204 should be further investigated in preclinical models and clinical studies.
Collapse
Affiliation(s)
- Wararat Chiangjong
- Pediatric Translational Research Unit, Division of Evidence-based Pediatrics and Research, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| | - Jirawan Panachan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Sujitra Keadsanti
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - David S Newburg
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Ardythe L Morrow
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States; Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.
| |
Collapse
|
2
|
Alfaifi J. miRNAs Role in Wilms tumor pathogenesis: Signaling pathways interplay. Pathol Res Pract 2024; 256:155254. [PMID: 38460245 DOI: 10.1016/j.prp.2024.155254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Wilms' tumors (WTs) are the most common type of kidney tumor in children, and a negative outlook is generally associated with widespread anaplastic. MicroRNAs (miRNAs) are crucial in the development of WT by regulating the expression of specific genes. There is an increasing amount of research that connects the dysregulation of miRNAs to the development of various renal illnesses. The conditions encompassed are renal fibrosis, renal cancers, and chronic and polycystic kidney disease. Dysregulation of several important miRNAs, either oncogenic or tumor-suppressing, has been found in WT. The present state of knowledge on the involvement of dysregulated miRNAs in the progression of WT is summarized in this review.
Collapse
Affiliation(s)
- Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
3
|
Orgen Calli A, Issin G, Yilmaz I, Ince D, Tural E, Guzelis I, Cecen RE, Olgun HN, Gokcay D, Ozer E. The association of miR-204 and mir-483 5p expression with clinicopathological features of Wilms tumor: Could this provide foresight? Jpn J Clin Oncol 2023; 53:1170-1176. [PMID: 37647636 DOI: 10.1093/jjco/hyad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Wilms tumor is the most common cancer of the kidney that occurs during childhood, and histologically, it mimics renal embryogenesis. With the development and improvement of up-to-date treatment protocols, the survival rates of Wilms tumor have increased. However, metastases or local relapses are still observed in 15% of patients. The search for reliable biomarkers to identify at-risk patients is ongoing to predict the variability in treatment success. Currently, the evaluation of clinical, histopathological and genetic features are common diagnostic methods; however, epigenetic features can be examined with microRNA expression analyses and might allow us to comment on the behavior of the tumor and treatment response. METHODS In this study, we aimed to evaluate the relationship between microRNA-204 and microRNA-483-5p expression with clinicopathological data and the effect on Wilms tumor survival. For this purpose, the expression levels of RNU6B, microRNA-204 and microRNA-483-5p were evaluated in tumor and normal tissue by qreal time-polymerase chain reaction. We also investigated the relationship between microRNA expression levels with the clinicopathological and histological features of Wilms tumor. RESULTS AND CONCLUSION The results of our study indicate that the relative expression levels of microRNA-204 in Wilms tumor tissues were significantly lower than that in adjacent normal tissues. By contrast, tumor tissue had a higher microRNA-483-5p expression than the corresponding normal tissues. A statistically significant difference between microRNA-204 expression level with age and the presence of anaplasia was observed. The upregulation of microRNA-483-5p was found to have a significant correlation with patients after preoperative chemotherapy and complete tumor necrosis. Taken together, our data suggest that microRNA-204 could play a critical role as a tumor suppressor, whereas microRNA-483-5p acts as an oncogene in Wilms tumor progression. More importantly, microRNA-204 might be a novel predictive biomarker for anaplastic histology and could be useful for developing therapeutic interventions targeting this marker.
Collapse
Affiliation(s)
- Aylin Orgen Calli
- Department of Pathology, Ataturk Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkiye
| | - Gizem Issin
- Department of Pathology, Mengucek Gazi Training and Research Hospital, Erzincan Binali Yıldırım University, Erzincan, Turkiye
| | - Ismail Yilmaz
- Department of Pathology, Istanbul Sultan Abdulhamid Han Training and Research Hospital, Medical Sciences University, Istanbul, Turkiye
| | - Dilek Ince
- Department of Pediatric Oncology, Institute of Oncology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Ersin Tural
- Department of Pediatrics, Istanbul Sultan Abdulhamid Han Training and Research Hospital, Medical Sciences University, Istanbul, Turkiye
| | - Ismail Guzelis
- Department of Pathology, Ataturk Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkiye
| | - Refik Emre Cecen
- Department of Pediatric Oncology, Institute of Oncology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Hatice Nur Olgun
- Department of Pediatric Oncology, Institute of Oncology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Deniz Gokcay
- Department of Pathology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Erdener Ozer
- Department of Pathology, Izmir Dokuz Eylul University, Izmir, Turkiye
| |
Collapse
|
4
|
A Systematic Pan-Cancer Analysis of MEIS1 in Human Tumors as Prognostic Biomarker and Immunotherapy Target. J Clin Med 2023; 12:jcm12041646. [PMID: 36836180 PMCID: PMC9964192 DOI: 10.3390/jcm12041646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND We intended to explore the potential immunological functions and prognostic value of Myeloid Ecotropic Viral Integration Site 1 (MEIS1) across 33 cancer types. METHODS The data were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Gene expression omnibus (GEO) datasets. Bioinformatics was used to excavate the potential mechanisms of MEIS1 across different cancers. RESULTS MEIS1 was downregulated in most tumors, and it was linked to the immune infiltration level of cancer patients. MEIS1 expression was different in various immune subtypes including C2 (IFN-gamma dominant), C5 (immunologically quiet), C3 (inflammatory), C4 (lymphocyte depleted), C6 (TGF-b dominant) and C1 (wound healing) in various cancers. MEIS1 expression was correlated with Macrophages_M2, CD8+T cells, Macrophages_M1, Macrophages_M0 and neutrophils in many cancers. MEIS1 expression was negatively related to tumor mutational burden (TMB), microsatellite instability (MSI) and neoantigen (NEO) in several cancers. Low MEIS1 expression predicts poor overall survival (OS) in adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), and kidney renal clear cell carcinoma (KIRC) patients, while high MEIS1 expression predicts poor OS in colon adenocarcinoma (COAD) and low grade glioma (LGG) patients. CONCLUSION Our findings revealed that MEIS1 is likely to be a potential new target for immuno-oncology.
Collapse
|
5
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2022; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
6
|
Zhang F, Zeng L, Cai Q, Xu Z, Liu R, Zhong H, Mukiibi R, Deng L, Tang X, Xin H. Comprehensive Analysis of a Long Noncoding RNA-Associated Competing Endogenous RNA Network in Wilms Tumor. Cancer Control 2021; 27:1073274820936991. [PMID: 32597194 PMCID: PMC7324900 DOI: 10.1177/1073274820936991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNA (lncRNA) plays crucial roles in various biological processes of different cancers, especially acting as a competing endogenous RNA (ceRNA). However, the role of lncRNA-mediated ceRNA in Wilms tumor (WT), which is the most common malignant kidney cancer in children, remains unknown. In present study, RNA sequence profiles and clinical data of 125 patients with WT consisting of 119 tumor and 6 normal tissues from Therapeutically Applicable Research To Generate Effective Treatments database were analyzed. A total of 1833 lncRNAs, 156 microRNAs (miRNAs), and 3443 messenger RNAs (mRNAs) were identified as differentially expressed (DE) using "DESeq2" package. The lncRNA-miRNA-mRNA ceRNA regulatory network involving 748 DElncRNAs, 33 DEmiRNAs, and 189 DEmRNAs was constructed based on miRcode, Targetscan, miRTarBase, and miRDB database. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that DEmRNAs were mainly enriched in cell proliferation-related processes and tumor-related pathways, respectively, and 13 hub genes were identified by a protein-protein interaction network. Survival analysis detected 48 lncRNAs, 7 miRNAs, and 16 mRNAs to have significant impact on the overall survival of patients with WT. Additionally, we found that 6 DElncRNAs with potential prognostic value were correlated with tumor stage (DENND5B-AS1) and histologic classification (TMPO-AS1, RP3-523K23.2, RP11-598F7.3, LAMP5-AS1, and AC013275.2) of patients with WT. Our research provides a great insight into understanding the molecular mechanism underlying occurrence and progression of WT, as well as the potential to develop targeted therapies and prognostic biomarkers.
Collapse
Affiliation(s)
- Feng Zhang
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Liping Zeng
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | | | - Zihao Xu
- Nanchang University, Nanchang, China
| | - Ruida Liu
- Nanchang University, Nanchang, China
| | | | - Robert Mukiibi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Libin Deng
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiaoli Tang
- Nanchang University, Nanchang, China.,Department of Biochemistry, School of Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
8
|
Cheng Y, Wang D, Wang F, Liu J, Huang B, Baker MA, Yin J, Wu R, Liu X, Regner KR, Usa K, Liu Y, Zhang C, Dong L, Geurts AM, Wang N, Miller SS, He Y, Liang M. Endogenous miR-204 Protects the Kidney against Chronic Injury in Hypertension and Diabetes. J Am Soc Nephrol 2020; 31:1539-1554. [PMID: 32487559 DOI: 10.1681/asn.2019101100] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Aberrant microRNA (miRNA) expression affects biologic processes and downstream genes that are crucial to CKD initiation or progression. The miRNA miR-204-5p is highly expressed in the kidney but whether miR-204-5p plays any role in the development of chronic renal injury is unknown. METHODS We used real-time PCR to determine levels of miR-204 in human kidney biopsies and animal models. We generated Mir204 knockout mice and used locked nucleic acid-modified anti-miR to knock down miR-204-5p in mice and rats. We used a number of physiologic, histologic, and molecular techniques to analyze the potential role of miR-204-5p in three models of renal injury. RESULTS Kidneys of patients with hypertension, hypertensive nephrosclerosis, or diabetic nephropathy exhibited a significant decrease in miR-204-5p compared with controls. Dahl salt-sensitive rats displayed lower levels of renal miR-204-5p compared with partially protected congenic SS.13BN26 rats. Administering anti-miR-204-5p to SS.13BN26 rats exacerbated interlobular artery thickening and renal interstitial fibrosis. In a mouse model of hypertensive renal injury induced by uninephrectomy, angiotensin II, and a high-salt diet, Mir204 gene knockout significantly exacerbated albuminuria, renal interstitial fibrosis, and interlobular artery thickening, despite attenuation of hypertension. In diabetic db/db mice, administering anti-miR-204-5p exacerbated albuminuria and cortical fibrosis without influencing blood glucose levels. In all three models, inhibiting miR-204-5p or deleting Mir204 led to upregulation of protein tyrosine phosphatase SHP2, a target gene of miR-204-5p, and increased phosphorylation of signal transducer and activator of transcription 3, or STAT3, which is an injury-promoting effector of SHP2. CONCLUSIONS These findings indicate that the highly expressed miR-204-5p plays a prominent role in safeguarding the kidneys against common causes of chronic renal injury.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Clinical Institute of Anhui Medical University, Shenzhen, People's Republic of China.,The Center for Nephrology and Urology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dandan Wang
- The Center for Nephrology and Urology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jing Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Baorui Huang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xuanchen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Congxiao Zhang
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lijin Dong
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Sheldon S Miller
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
10
|
Barth DA, Slaby O, Klec C, Juracek J, Drula R, Calin GA, Pichler M. Current Concepts of Non-Coding RNAs in the Pathogenesis of Non-Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2019; 11:E1580. [PMID: 31627266 PMCID: PMC6826455 DOI: 10.3390/cancers11101580] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a relatively rare malignancy of the urinary tract system. RCC is a heterogenous disease in terms of underlying histology and its associated underlying pathobiology, prognosis and treatment schedule. The most prevalent histological RCC subtype is clear-cell renal cell carcinoma (ccRCC), accounting for about 70-80% of all RCCs. Though the pathobiology and treatment schedule for ccRCC are well-established, non-ccRCC subtypes account for 20%-30% of RCC altogether, and their underlying molecular biology and treatment options are poorly defined. The class of non-coding RNAs-molecules that are generally not translated into proteins-are new cancer drivers and suppressors in all types of cancer. Of these, small non-coding microRNAs (miRNAs) contribute to carcinogenesis by regulating posttranscriptional gene silencing. Additionally, a growing body of evidence supports the role of long non-coding RNAs (lncRNAs) in cancer development and progression. Most studies on non-coding RNAs in RCC focus on clear-cell histology, and there is a relatively limited number of studies on non-ccRCC subtypes. The aim of this review is to give an overview of the current knowledge regarding the role of non-coding RNAs (including short and long non-coding RNAs) in non-ccRCC and to highlight possible implications as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Rares Drula
- Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Gong Y, Zou B, Chen J, Ding L, Li P, Chen J, Chen J, Zhang B, Li J. Potential Five-MicroRNA Signature Model for the Prediction of Prognosis in Patients with Wilms Tumor. Med Sci Monit 2019; 25:5435-5444. [PMID: 31328722 PMCID: PMC6668497 DOI: 10.12659/msm.916230] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Wilms tumor (WT) is the most common type of pediatric renal malignancy, and is associated with poor prognosis. The aim of the present study was to identify microRNA (miRNA) signatures which might predict prognosis and categorize WTs into high- and low-risk subgroups. Material/Methods The miRNA expression profiles of WT patients and normal samples were obtained from the Therapeutically Applicable Research to Generate Effective Treatment database. Differentially expressed miRNAs between WT patients and normal samples were identified using the EdgeR package. Subsequently, correlations between differentially expressed miRNAs and the prognosis of overall survival were analyzed. Enrichment analyses for the targeted mRNAs were conducted via the Database for Annotation, Visualization, and Integration Discovery. Results A total of 154 miRNAs were identified as differentially expressed in WT. Of those, 18 miRNAs were associated with overall survival (P<0.05). A prognostic signature of 5 differentially expressed miRNAs (i.e., has-mir-149, has-mir-7112, has-mir-940, has-mir-1248, and has-mir-490) was constructed to classify the patients into high- and low-risk subgroups. The targeted mRNAs of these prognostic miRNAs were primarily enriched in Gene Ontology terms (i.e., protein autophosphorylation, protein dephosphorylation, and stress-activated MAPK cascade) and the Kyoto Encyclopedia of Genes and Genomes signaling pathways (i.e., MAPK, AMPK, and PI3K-Akt). Conclusions The 5-miRNA signature model might be useful in determining the prognosis of WT patients. As a promising prediction tool, this prognosis signature might serve as a potential biomarker for WT patients.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jianxu Chen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Lei Ding
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jiafan Chen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jiandi Chen
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Baimeng Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China (mainland)
| |
Collapse
|
12
|
Li T, Zhao P, Li Z, Wang CC, Wang YL, Gu Q. miR-200c-3p Suppresses the Proliferative, Migratory, and Invasive Capacities of Nephroblastoma Cells via Targeting FRS2. Biopreserv Biobank 2019; 17:444-451. [PMID: 31194576 DOI: 10.1089/bio.2019.0009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objectives: miR-200c-3p has been shown to serve as a tumor suppressor in various tumor types. However, the biological function of miR-200c-3p in nephroblastoma remains unknown. This study aims to investigate the biological function and regulatory mechanisms of miR-200c-3p in nephroblastoma development. Methods: The expression of miR-200c-3p in nephroblastoma tissues and cells was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of miR-200c-3p on the proliferation and cell cycle of SK-NEP-1 nephroblastoma cell line were evaluated by CCK-8 assay, colony formation assay, and flow cytometry. The effects of miR-200c-3p on the migratory and invasive capacities of SK-NEP-1 cells were measured by wound healing assay and transwell assay. The ability of miR-200c-3p to target fibroblast growth factor receptor substrate 2 (FRS2) was detected by quantitative PCR, western blot, and luciferase reporter assay. Results: The expression of miR-200c-3p was significantly downregulated in nephroblastoma tissues and cells compared with that in normal renal tissues and cells. miR-200c-3p inhibited the proliferative, migratory, and invasive capacities of nephroblastoma cells by targeting FRS2. Conclusions: miR-200c-3p suppresses the malignant behaviors of nephroblastoma cells by downregulating the expression of FRS2.
Collapse
Affiliation(s)
- Ting Li
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, P.R. China
| | - Ping Zhao
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, P.R. China
| | - Zhi Li
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, P.R. China
| | - Cui-Cui Wang
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, P.R. China
| | - You-Liang Wang
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, P.R. China
| | - Qi Gu
- Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, P.R. China
| |
Collapse
|
13
|
Liu K, He B, Xu J, Li Y, Guo C, Cai Q, Wang S. miR-483-5p Targets MKNK1 to Suppress Wilms' Tumor Cell Proliferation and Apoptosis In Vitro and In Vivo. Med Sci Monit 2019; 25:1459-1468. [PMID: 30798328 PMCID: PMC6398281 DOI: 10.12659/msm.913005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Wilms’ tumor (WT) is the most common type of renal tumor in children and it has high mortality rates. MicroRNAs (miRNAs) are important regulators of cellular differentiation processes that have been discovered to contribute to the development of various kinds of tumors. Material/Methods The Wilms’ tumor tissues and adjacent tissues were obtained from 28 patients to quantity miR-483-5p expression level. The miR-483-5p mimics and scrambles were transfected into the human kidney WT cell line GHINK-1 to evaluate the effect of miR-483-5p on Wilms’ tumor cell proliferation and apoptosis in vitro. A total of 18 female BALB/c nu/nu mice were used to further confirm how miR-483-5p affects Wilms’ tumor in vivo. Results In the present study, miR-483-5p was identified to be downregulated in Wilms’ tumor tissues compared with the normal adjacent tissues. Additionally, low expression of mir-483-5p was significantly correlated with unfavorable histology subtypes, lymphatic metastasis, and late clinical stage (stage III and IV). Overexpression of miR-483-5p inhibited the proliferation and colony formation of GHINK-1 (Wilms’ tumor) cells compared with the control group due to enhanced cell apoptosis. Furthermore, miR-483-5p upregulated the protein expression level of caspase-3. Finally, MAP kinase-interacting serine/threonine-protein kinase 1 was identified as a direct target of miR-483-5p, which was confirmed by luciferase reporter assay and Western blotting. Conclusions MiR-483-5p suppressed WT cell proliferation via inducing apoptosis through targeting MKNK1. This may provide novel insights into the mechanisms underlying WT and a potential therapeutic candidate for the treatment of WT in the future.
Collapse
Affiliation(s)
- Kai Liu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Bingsen He
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Jiang Xu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yang Li
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Cheng Guo
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Qinhui Cai
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Shuya Wang
- Department of Rheumatology and Immune Disease, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
14
|
Abstract
Introduction Wilms’ tumor (WT), the most common childhood tumor, occurs in sporadic or familial forms. Recent findings reported that abnormal expression in microRNA (miRNA) suggests an important role of miRNAs during WT progress. MiRNAs are endogenous short-chain noncoding RNAs, which have been reported as key biomarkers for detecting tumor onset and progression. However, the functional role of miR-1180 in WT has remained unknown. Materials and methods MTT and clonogenic survival assays were used to detect WT cell proliferation. Flow cytometry Annexin V-FITC was used to measure apoptosis. In addition, proteins expressions in the cells were determined by Western blotting. Results In the present study, we demonstrated that miR-1180 is upregulated in WT when compared with adjacent tissues by quantitative reverse-transcription polymerase chain reaction. In addition, the inhibition of miR-1180 induced apoptosis in SK-NEP-1 cell line in vitro. Moreover, luciferase reporter assay showed that p73 protein was the target of miR-1180, which was confirmed by the results of Western blotting. Finally, in vivo data indicated that the tumor growth in mice was significantly inhibited by miR-1180 inhibitor. Conclusion Our results indicate that miR-1180 might serve as a therapeutic target for future WT therapy.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou
| | - Huaicheng Li
- Department of Internal Medicine, The People's Hospital of Zhoukou, Zhoukou, People's Republic of China
| |
Collapse
|
15
|
Zhu S, Fu W, Zhang L, Fu K, Hu J, Jia W, Liu G. LINC00473 antagonizes the tumour suppressor miR-195 to mediate the pathogenesis of Wilms tumour via IKKα. Cell Prolif 2017; 51. [PMID: 29159834 DOI: 10.1111/cpr.12416] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Although dramatic improvements of overall survival has achieved in patients with favourable histology Wilms tumour, disease recurrence is still the main cause of cancer-related death in childhood. Long non-coding RNAs (lncRNAs) as oncogenes or tumour suppressors are dysregulated during carcinogenesis. However, the role of lncRNAs in the pathogenesis of Wilms tumour is unknown. Here, an lncRNA LINC00473 signature that functioned as oncogene was identified in Wilms tumour. METHODS Wilms tumour (n = 15) and relative normal tissues were collected. The LINC00473 expression and function in Wilms tumour was determined. The LncRNA-miRNA network of LINC00473 was analysed in vitro and vivo. RESULTS We uncovered that the expression of LINC00473 was elevated in tumour tissues than that in relative normal tissues. Higher LINC00473 levels correlated to higher stage and unfavourable histology Wilms tumour. Mechanistically, knockdown of LINC00473 inhibited cell vitality and induced Bcl-2-dependent apoptosis and G1/S arrest via CDK2 and cyclin D1. Moreover, LINC00473 harboured binding sites for miR-195 and limited miR-195 availability in a dose-dependent manner. Forced expression of miR-195 impaired tumour survival and metastasis, which, however, could be restored by LINC00473. Furthermore, IKKα was the downstream of LINC00473/miR-195 signals and could be directly targeted by miR-195 to participate LINC00473-induced tumour progression. Loss-of-function of LINC00473 in vivo effectively promoted the regression of Wilms tumour via miR-195/IKKα-mediated growth inhibition. CONCLUSION LINC00473 as an oncogene is up-regulated to participate into the molecular pathogenesis of Wilms tumour via miR-195/IKKα.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liyu Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kai Fu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinhua Hu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Ye ZH, Wen DY, Cai XY, Liang L, Wu PR, Qin H, Yang H, He Y, Chen G. The protective value of miR-204-5p for prognosis and its potential gene network in various malignancies: a comprehensive exploration based on RNA-seq high-throughput data and bioinformatics. Oncotarget 2017; 8:104960-104980. [PMID: 29285225 PMCID: PMC5739612 DOI: 10.18632/oncotarget.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/23/2017] [Indexed: 01/26/2023] Open
Abstract
Purpose The prognostic role of miR-204-5p (previous ID: miR-204) is varied and inconclusive in diverse types of malignant neoplasm. Therefore, the purposes of the study comprehensively explore the overall prognostic role of miR-204-5p based on high-throughput microRNA sequencing data, and to investigate the potential role of miR-204-5p via bioinformatics approaches. Materials and Methods The data of microRNA sequencing and survival were downloaded from The Cancer Genome Atlas (TCGA), and the prognostic value of miR-204-5p was analyzed by using Kaplan-Meier and univariate cox regressions. Then a meta-analysis was conducted with all TCGA data and relevant studies collected from literature. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. The prospective molecular mechanism of miR-204-5p was also assessed at a functional level with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-to-protein interactions (PPI) network. Results From TCGA data, the prognostic value of miR-204-5p obviously varied among 20 types of cancers. The pooled HR was 0.928 (95% CI: 0.774-1.113, P = 0.386, 6203 cases of malignancies). For the meta-analysis based on 15 studies from literature, the pooled HR was 0.420 (95% CI: 0.306-0.576, P < 0.001, 1783 cases of malignancies) for overall survival (OS). Furthermore, the combined HR from both TCGA and literature was 0.708 (95% CI: 0.600-0.834, P < 0.001, 7986 cases of malignancies). Subgroup analyses revealed that miR-204-5p could act as a prognostic marker in cancers of respiratory system and digestive system. Functional analysis was conducted on genes predicted as targets (n = 2057) after the overlay genes from six out of twelve software were extracted. Two significant KEGG pathways were enriched (hsa04360: Axon guidance and hsa04722: Neurotrophin signaling pathway). PPI network revealed some hub genes/proteins (CDC42, SOS1, PIK3R1, MAPK1, PLCG1, ESR1, MAPK11, and AR). Conclusions The current study demonstrates that over-expression of miR-204-5p could be a protective factor for a certain group of cancers. Clinically, the low miR-204-5p level could gain a predictive value for a poor survival in cancers of respiratory system and digestive system. The detailed molecular mechanisms of miR-204-5p remain to be verified.
Collapse
Affiliation(s)
- Zhi-Hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Pei-Rong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
17
|
Neto M, Naval-Sánchez M, Potier D, Pereira PS, Geerts D, Aerts S, Casares F. Nuclear receptors connect progenitor transcription factors to cell cycle control. Sci Rep 2017; 7:4845. [PMID: 28687780 PMCID: PMC5501803 DOI: 10.1038/s41598-017-04936-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/23/2017] [Indexed: 01/31/2023] Open
Abstract
The specification and growth of organs is controlled simultaneously by networks of transcription factors. While the connection between these transcription factors with fate determinants is increasingly clear, how they establish the link with the cell cycle is far less understood. Here we investigate this link in the developing Drosophila eye, where two transcription factors, the MEIS1 homologue hth and the Zn-finger tsh, synergize to stimulate the proliferation of naïve eye progenitors. Experiments combining transcriptomics, open-chromatin profiling, motif analysis and functional assays indicate that these progenitor transcription factors exert a global regulation of the proliferation program. Rather than directly regulating cell cycle genes, they control proliferation through an intermediary layer of nuclear receptors of the ecdysone/estrogen-signaling pathway. This regulatory subnetwork between hth, tsh and nuclear receptors might be conserved from Drosophila to mammals, as we find a significant co-overexpression of their human homologues in specific cancer types.
Collapse
Affiliation(s)
- Marta Neto
- CABD, Andalusian Centre for Developmental Biology, CSIC-UPO-JA, 41013, Seville, Spain.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | | | - Delphine Potier
- School of Medicine, University of Leuven, box 602 3000, Leuven, Belgium
| | - Paulo S Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Dirk Geerts
- Department of Medical Biology L2-109, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stein Aerts
- School of Medicine, University of Leuven, box 602 3000, Leuven, Belgium.
| | - Fernando Casares
- CABD, Andalusian Centre for Developmental Biology, CSIC-UPO-JA, 41013, Seville, Spain.
| |
Collapse
|
18
|
Zhu J, Cui L, Xu A, Yin X, Li F, Gao J. MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration. BMC Cancer 2017; 17:176. [PMID: 28270206 PMCID: PMC5341457 DOI: 10.1186/s12885-017-3155-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/23/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Myeloid ecotropic viral integration site 1 (MEIS1) protein plays a synergistic causative role in acute myeloid leukemia (AML). However, MEIS1 has also shown to be a potential tumor suppressor in some other cancers, such as non-small-cell lung cancer (NSCLC) and prostate cancer. Although multiple roles of MEIS1 in cancer development and progression have been identified, there is an urgent demand to discover more functions of this molecule for further therapeutic design. METHODS MEIS1 was overexpressed via adenovirus vector in clear cell renal cell carcinoma (ccRCC) cells. Western blot and real-time qPCR (quantitative Polymerase Chain Reaction) was performed to examine the protein and mRNA levels of MEIS1. Cell proliferation, survival, in vitro migration and invasion were tested by MTT, colony formation, soft-agar, transwell (in vitro invasion/migration) assays, and tumor in vivo growthwas measured on nude mice model. In addition, flow-cytometry analysis was used to detect cell cycle arrest or non-apoptotic cell death of ccRCC cells induced by MEIS1. RESULTS MEIS1 exhibits a decreased expression in ccRCC cell lines than that in non-tumor cell lines. MEIS1 overexpression inhibits ccRCC cells proliferation and induces G1/S arrest concomitant with marked reduction of G1/S transition regulators, Cyclin D1 and Cyclin A. Moreover, MEIS1-1 overexpression also induces non-apoptotic cell death of ccRCC cells via decreasing the levels of pro-survival regulators Survivin and BCL-2. Transwell migration assay (TMA) shows that MEIS1 attenuates in vitro invasion and migration of ccRCC cells with down-regulated epithelial-mesenchymal transition (EMT) process. Further, in nude mice model, MEIS1 inhibits the in vivo growth of Caki-1 cells. CONCLUSIONS By investigating the role of MEIS1 in ccRCC cells' survival, proliferation, anchorage-independent growth, cell cycle progress, apoptosis and metastasis, in the present work, we propose that MEIS1 may play an important role in clear cell renal cell carcinoma (ccRCC) development.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Liang Cui
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
- Department of Urology, Civil Aviation General Hospital/Civil Aviation Medical College of Peking University, Beijing, 100123 People’s Republic of China
| | - Axiang Xu
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Xiaotao Yin
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Fanglong Li
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Jiangping Gao
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| |
Collapse
|
19
|
von Burstin J, Bachhuber F, Paul M, Schmid RM, Rustgi AK. The TALE homeodomain transcription factor MEIS1 activates the pro-metastatic melanoma cell adhesion moleculeMcamto promote migration of pancreatic cancer cells. Mol Carcinog 2016; 56:936-944. [DOI: 10.1002/mc.22547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/12/2016] [Accepted: 08/29/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Johannes von Burstin
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center; University of Pennsylvania; Philadelphia Pennsylvania
- I. Medizinische Klinik; Technische Universität München; Munich Germany
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | | | - Mariel Paul
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | - Roland M. Schmid
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | - Anil K. Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
20
|
The dual regulatory role of miR-204 in cancer. Tumour Biol 2016; 37:11667-11677. [PMID: 27438705 PMCID: PMC5080331 DOI: 10.1007/s13277-016-5144-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous, small (about 22 nucleotides) non-coding RNAs which negatively regulate gene expressions. As one of them, miR-204 originates from the sixth intron of the transient receptor potential melastatin 3 (TRPM3) gene. Therefore, expression of miR-204 is under the control of the TRPM3 promoter and regulated by genetic and epigenetic mechanisms. miR-204 has been found to play the important roles in development of eyes and adipogenesis. Its pathological functions have been observed in a few diseases including pulmonary arterial hypertension, diabetes, and various types of cancers. It is believed that miR-204 acts as a tumor-suppressor via promoting apoptosis, conferring the resistance of cancer cells to chemotherapy, and suppressing the self-renewal of cancer stem cells (CSCs) and the epithelial to mesenchymal transition (EMT). Expression of miR-204 is repressed by its targets XRN1 and TRKB in prostate cancer and endometrial carcinoma, respectively; therefore, they establish an oncogenic feedback loops that play an important role promoting development of cancer. In this review, we summarize our current knowledge regarding miR-204, including its expression, regulation and biological functions, especially focusing our discussion on its role in tumor development and tumor progression.
Collapse
|
21
|
Ludwig N, Werner TV, Backes C, Trampert P, Gessler M, Keller A, Lenhof HP, Graf N, Meese E. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes. Int J Mol Sci 2016; 17:475. [PMID: 27043538 PMCID: PMC4848931 DOI: 10.3390/ijms17040475] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT.
Collapse
Affiliation(s)
- Nicole Ludwig
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany.
| | - Tamara V Werner
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany.
| | - Christina Backes
- Chair for Clinical Bioinformatics, Building E2.1, 66123 Saarbruecken, Germany.
| | - Patrick Trampert
- Center for Bioinformatics, Saarland University, Building E.1.1, 66041 Saarbruecken, Germany.
| | - Manfred Gessler
- Developmental Biochemistry, Biocenter, and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, 97074 Wuerzburg, Germany.
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Building E2.1, 66123 Saarbruecken, Germany.
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, Building E.1.1, 66041 Saarbruecken, Germany.
| | - Norbert Graf
- Department of Pediatric Oncology and Hematology, Medical School, Saarland University, 66421 Homburg, Germany.
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
22
|
Yu X, Li Z, Chan MTV, Wu WKK. The roles of microRNAs in Wilms' tumors. Tumour Biol 2015; 37:1445-50. [PMID: 26634744 DOI: 10.1007/s13277-015-4514-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Wilms' tumor is the most common renal tumor in children in which diffusely anaplastic or unfavorable histology foreshadows poor prognosis. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. Accumulating evidence shows that microRNA dysregulation takes part in the pathogenesis of many renal diseases, such as chronic kidney diseases, polycystic kidney disease, renal fibrosis, and renal cancers. In Wilms' tumor, dysregulation of some key oncogenic or tumor-suppressing microRNAs, such as miR-17~92 cluster, miR-185, miR-204, and miR-483, has been documented. In this review, we will summarize current evidence on the role of dysregulated microRNAs in the development of Wilms' tumor.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100042, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Charlton J, Pavasovic V, Pritchard-Jones K. Biomarkers to detect Wilms tumors in pediatric patients: where are we now? Future Oncol 2015; 11:2221-34. [PMID: 26235184 DOI: 10.2217/fon.15.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wilms tumor (WT) is the most common pediatric renal tumor. Survival rates are high, whether treated according to the European protocols (SIOP-RTSG) that use prenephrectomy chemotherapy or the Children's Oncology Group (COG) protocols, with immediate nephrectomy. However, the more intensive treatment given to higher risk subgroups may result in late effects. Current risk stratification does not identify all tumors that relapse and loss of heterozygosity of 16q and 1p are the only molecular biomarkers used in risk stratification. In this review we describe recent new genetic and epigenetic findings in WT and discuss their potential use as biomarkers. We discuss approaches to ensure representative sampling of WTs including the potential for 'liquid biopsy' to circumvent intratumoral heterogeneity.
Collapse
Affiliation(s)
- Jocelyn Charlton
- UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Vesna Pavasovic
- UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Kathy Pritchard-Jones
- UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|