1
|
Lashen A, Algethami M, Alqahtani S, Shoqafi A, Sheha A, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. The Clinicopathological Significance of the Cyclin D1/E1-Cyclin-Dependent Kinase (CDK2/4/6)-Retinoblastoma (RB1/pRB1) Pathway in Epithelial Ovarian Cancers. Int J Mol Sci 2024; 25:4060. [PMID: 38612869 PMCID: PMC11012085 DOI: 10.3390/ijms25074060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Cyclin-dependent kinases (CDK2, CDK4, CDK6), cyclin D1, cyclin E1 and phosphorylated retinoblastoma (pRB1) are key regulators of the G1/S cell cycle checkpoint and may influence platinum response in ovarian cancers. CDK2/4/6 inhibitors are emerging targets in ovarian cancer therapeutics. In the current study, we evaluated the prognostic and predictive significance of the CDK2/4/6-cyclin D1/E1-pRB1 axis in clinical ovarian cancers (OC). The CDK2/4/6, cyclin D1/E1 and RB1/pRB1 protein expression were investigated in 300 ovarian cancers and correlated with clinicopathological parameters and patient outcomes. CDK2/4/6, cyclin D1/E1 and RB1 mRNA expression were evaluated in the publicly available ovarian TCGA dataset. We observed nuclear and cytoplasmic staining for CDK2/4/6, cyclins D1/E1 and RB1/pRB1 in OCs with varying percentages. Increased nuclear CDK2 and nuclear cyclin E1 expression was linked with poor progression-free survival (PFS) and a shorter overall survival (OS). Nuclear CDK6 was associated with poor OS. The cytoplasmic expression of CDK4, cyclin D1 and cyclin E1 also has predictive and/or prognostic significance in OCs. In the multivariate analysis, nuclear cyclin E1 was an independent predictor of poor PFS. Tumours with high nuclear cyclin E1/high nuclear CDK2 have a worse PFS and OS. Detailed bioinformatics in the TCGA cohort showed a positive correlation between cyclin E1 and CDK2. We also showed that cyclin-E1-overexpressing tumours are enriched for genes involved in insulin signalling and release. Our data not only identified the prognostic/predictive significance of these key cell cycle regulators but also demonstrate the importance of sub-cellular localisation. CDK2 targeting in cyclin-E1-amplified OCs could be a rational approach.
Collapse
Affiliation(s)
- Ayat Lashen
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Pathology, Nottingham University Hospital, City Campus, Nottingham NG5 1PB, UK
| | - Mashael Algethami
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Shatha Alqahtani
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Ahmed Shoqafi
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Amera Sheha
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Jennie N. Jeyapalan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Nigel P. Mongan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emad A. Rakha
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Srinivasan Madhusudan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| |
Collapse
|
2
|
Flowers LJ, Hu S, Shrestha A, Martinot AJ, Leong JM, Osburne MS. Citrobacter rodentium Lysogenized with a Shiga Toxin-Producing Phage: A Murine Model for Shiga Toxin-Producing E. coli Infection. Methods Mol Biol 2021; 2291:381-397. [PMID: 33704765 DOI: 10.1007/978-1-0716-1339-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Shiga toxin-producing E. coli (STEC) is a common foodborne pathogen in developed countries. STEC generates "attaching and effacing" (AE) lesions on colonic epithelium, characterized by effacement of microvilli and the formation of actin "pedestals" beneath intimately attached bacteria. In addition, STEC are lysogenized with a phage that, upon induction, can produce potent Shiga toxins (Stx), potentially leading to both hemorrhagic colitis and hemolytic uremic syndrome. Investigation of the pathogenesis of this disease has been challenging because STEC does not readily colonize conventional mice.Citrobacter rodentium (CR) is a related mouse pathogen that also generates AE lesions. Whereas CR does not produce Stx, a murine model for STEC utilizes CR lysogenized with an E. coli-derived Stx phage, generating CR(Φstx), which both colonizes conventional mice and readily gives rise to systemic disease. We present here key methods for the use of CR(Φstx) infection as a highly predictable murine model for infection and disease by STEC. Importantly, we detail CR(Φstx) inoculation by feeding, determination of pathogen colonization, production of phage and toxin, and assessment of intestinal and renal pathology. These methods provide a framework for studying STEC-mediated systemic disease that may aid in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Laurice J Flowers
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University Graduate School in Biomedical Sciences, Boston, MA, USA.,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding, Guangzhou, China
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Marcia S Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Phosphoproteomic analysis sheds light on intracellular signaling cascades triggered by Formyl-Peptide Receptor 2. Sci Rep 2019; 9:17894. [PMID: 31784636 PMCID: PMC6884478 DOI: 10.1038/s41598-019-54502-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Formyl peptide receptors (FPRs) belong to the family of seven transmembrane Gi-protein coupled receptors (GPCR). FPR2 is considered the most promiscuous member of this family since it recognizes a wide variety of ligands. It plays a crucial role in several physio-pathological processes and different studies highlighted the correlation between its expression and the higher propensity to invasion and metastasis of some cancers. FPR2 stimulation by its synthetic agonist WKYMVm triggers multiple phosphorylations of intracellular signaling molecules, such as ERKs, PKC, PKB, p38MAPK, PI3K, PLC, and of non-signaling proteins, such as p47phox and p67phox which are involved in NADPH oxidase-dependent ROS generation. Biological effects of FPR2 stimulation include intracellular Ca2+ mobilization, cellular proliferation and migration, and wound healing. A systematic analysis of the phosphoproteome in FPR2-stimulated cells has not been yet reported. Herein, we describe a large-scale phosphoproteomic study in WKYMVm-stimulated CaLu-6 cells. By using high resolution MS/MS we identified 290 differentially phosphorylated proteins and 53 unique phosphopeptides mapping on 40 proteins. Phosphorylations on five selected phospho-proteins were further validated by western blotting, confirming their dependence on FPR2 stimulation. Interconnection between some of the signalling readout identified was also evaluated. Furthermore, we show that FPR2 stimulation with two anti-inflammatory agonists induces the phosphorylation of selected differentially phosphorylated proteins, suggesting their role in the resolution of inflammation. These data provide a promising resource for further studies on new signaling networks triggered by FPR2 and on novel molecular drug targets for human diseases.
Collapse
|
4
|
Kaneshiro K, Sakai Y, Suzuki K, Uchida K, Tateishi K, Terashima Y, Kawasaki Y, Shibanuma N, Yoshida K, Hashiramoto A. Interleukin-6 and tumour necrosis factor-α cooperatively promote cell cycle regulators and proliferate rheumatoid arthritis fibroblast-like synovial cells. Scand J Rheumatol 2019; 48:353-361. [DOI: 10.1080/03009742.2019.1602164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- K Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Y Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K Suzuki
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Terashima
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Kawasaki
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, Japan
| | - N Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - K Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - A Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
5
|
Zainal NS, Lee BKB, Wong ZW, Chin IS, Yee PS, Gan CP, Mun KS, Rahman ZAA, Gutkind JS, Patel V, Cheong SC. Effects of palbociclib on oral squamous cell carcinoma and the role of PIK3CA in conferring resistance. Cancer Biol Med 2019; 16:264-275. [PMID: 31516747 PMCID: PMC6713638 DOI: 10.20892/j.issn.2095-3941.2018.0257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objective Lack of effective therapies remains a problem in the treatment of oral squamous cell carcinoma (OSCC), especially in patients with advanced tumors. OSCC development is driven by multiple aberrancies within the cell cycle pathway, including amplification of cyclin D1 and loss of p16. Hence, cell cycle inhibitors of the CDK4/6-cyclin D axis are appealing targets for OSCC treatment. Here, we determined the potency of palbociclib and identified genetic features that are associated with the response of palbociclib in OSCC. Methods The effect of palbociclib was evaluated in a panel of well-characterized OSCC cell lines by cell proliferation assays and further confirmed by in vivo evaluation in xenograft models. PIK3CA-mutant isogenic cell lines were used to investigate the effect of PIK3CA mutation towards palbociclib response.
Results We demonstrated that 80% of OSCC cell lines are sensitive to palbociclib at sub-micromolar concentrations. Consistently, palbociclib was effective in controlling tumor growth in mice. We identified that palbociclib-resistant cells harbored mutations in PIK3CA. Using isogenic cell lines, we showed that PIK3CA mutant cells are less responsive to palbociclib as compared to wild-type cells with concurrent upregulation of CDK2 and cyclin E1 protein levels. We further demonstrated that the combination of a PI3K/mTOR inhibitor (PF-04691502) and palbociclib completely controlled tumor growth in mice.
Conclusions This study demonstrated the potency of palbociclib in OSCC models and provides a rationale for the inclusion of PIK3CA testing in the clinical evaluation of CDK4/6 inhibitors and suggests combination approaches for further clinical studies.
Collapse
Affiliation(s)
- Nur Syafinaz Zainal
- Head and Neck Team, Cancer Research Malaysia, Selangor 47500, Malaysia.,Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bernard Kok Bang Lee
- Head and Neck Team, Cancer Research Malaysia, Selangor 47500, Malaysia.,Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zheng Wei Wong
- Head and Neck Team, Cancer Research Malaysia, Selangor 47500, Malaysia
| | - Iuan Sheau Chin
- Head and Neck Team, Cancer Research Malaysia, Selangor 47500, Malaysia
| | - Pei San Yee
- Head and Neck Team, Cancer Research Malaysia, Selangor 47500, Malaysia.,Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chai Phei Gan
- Head and Neck Team, Cancer Research Malaysia, Selangor 47500, Malaysia
| | - Kein Seong Mun
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.,Oral Cancer Research and Co-ordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - J Silvio Gutkind
- Department of Pharmacology, University of California, San Diego 92093-5004, CA, USA
| | - Vyomesh Patel
- Head and Neck Team, Cancer Research Malaysia, Selangor 47500, Malaysia
| | - Sok Ching Cheong
- Head and Neck Team, Cancer Research Malaysia, Selangor 47500, Malaysia.,Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
De Dominici M, Porazzi P, Soliera AR, Mariani SA, Addya S, Fortina P, Peterson LF, Spinelli O, Rambaldi A, Martinelli G, Ferrari A, Iacobucci I, Calabretta B. Targeting CDK6 and BCL2 Exploits the "MYB Addiction" of Ph + Acute Lymphoblastic Leukemia. Cancer Res 2017; 78:1097-1109. [PMID: 29233926 DOI: 10.1158/0008-5472.can-17-2644] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/25/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is currently treated with BCR-ABL1 tyrosine kinase inhibitors (TKI) in combination with chemotherapy. However, most patients develop resistance to TKI through BCR-ABL1-dependent and -independent mechanisms. Newly developed TKI can target Ph+ ALL cells with BCR-ABL1-dependent resistance; however, overcoming BCR-ABL1-independent mechanisms of resistance remains challenging because transcription factors, which are difficult to inhibit, are often involved. We show here that (i) the growth of Ph+ ALL cell lines and primary cells is highly dependent on MYB-mediated transcriptional upregulation of CDK6, cyclin D3, and BCL2, and (ii) restoring their expression in MYB-silenced Ph+ ALL cells rescues their impaired proliferation and survival. Levels of MYB and CDK6 were highly correlated in adult Ph+ ALL (P = 0.00008). Moreover, Ph+ ALL cells exhibited a specific requirement for CDK6 but not CDK4 expression, most likely because, in these cells, CDK6 was predominantly localized in the nucleus, whereas CDK4 was almost exclusively cytoplasmic. Consistent with their essential role in Ph+ ALL, pharmacologic inhibition of CDK6 and BCL2 markedly suppressed proliferation, colony formation, and survival of Ph+ ALL cells ex vivo and in mice. In summary, these findings provide a proof-of-principle, rational strategy to target the MYB "addiction" of Ph+ ALL.Significance: MYB blockade can suppress Philadelphia chromosome-positive leukemia in mice, suggesting that this therapeutic strategy may be useful in patients who develop resistance to imatinib and other TKIs used to treat this disease. Cancer Res; 78(4); 1097-109. ©2017 AACR.
Collapse
Affiliation(s)
- Marco De Dominici
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Angela Rachele Soliera
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena, Modena, Italy
| | - Samanta A Mariani
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sankar Addya
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Luke F Peterson
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giovanni Martinelli
- Department of Hematology and Istituto L. and E. Seragnoli, University of Bologna, Bologna, Italy
| | - Anna Ferrari
- Department of Hematology and Istituto L. and E. Seragnoli, University of Bologna, Bologna, Italy
| | - Ilaria Iacobucci
- Department of Hematology and Istituto L. and E. Seragnoli, University of Bologna, Bologna, Italy
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Ouzounoglou E, Dionysiou D, Stamatakos GS. Differentiation resistance through altered retinoblastoma protein function in acute lymphoblastic leukemia: in silico modeling of the deregulations in the G1/S restriction point pathway. BMC SYSTEMS BIOLOGY 2016; 10:23. [PMID: 26932523 PMCID: PMC4774111 DOI: 10.1186/s12918-016-0264-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/31/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND As in many cancer types, the G1/S restriction point (RP) is deregulated in Acute Lymphoblastic Leukemia (ALL). Hyper-phosphorylated retinoblastoma protein (hyper-pRb) is found in high levels in ALL cells. Nevertheless, the ALL lymphocyte proliferation rate for the average patient is surprisingly low compared to its normal counterpart of the same maturation level. Additionally, as stated in literature, ALL cells possibly reside at or beyond the RP which is located in the late-G1 phase. This state may favor their differentiation resistant phenotype. A major phenomenon contributing to this fact is thought to be the observed limited redundancy in the phosphorylation of retinoblastoma protein (pRb) by the various Cyclin Dependent Kinases (Cdks). The latter may result in partial loss of pRb functions despite hyper-phosphorylation. RESULTS To test this hypothesis, an in silico model aiming at simulating the biochemical regulation of the RP in ALL is introduced. By exploiting experimental findings derived from leukemic cells and following a semi-quantitative calibration procedure, the model has been shown to satisfactorily reproduce such a behavior for the RP pathway. At the same time, the calibrated model has been proved to be in agreement with the observed variation in the ALL cell cycle duration. CONCLUSIONS The proposed model aims to contribute to a better understanding of the complex phenomena governing the leukemic cell cycle. At the same time it constitutes a significant first step in the creation of a personalized proliferation rate predictor that can be used in the context of multiscale cancer modeling. Such an approach is expected to play an important role in the refinement and the advancement of mechanistic modeling of ALL in the context of the emergent and promising scientific domains of In Silico Oncology and more generally In Silico Medicine.
Collapse
Affiliation(s)
- Eleftherios Ouzounoglou
- In Silico Oncology and In Silico Medicine Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Zografou, 15780, Athens, Greece.
| | - Dimitra Dionysiou
- In Silico Oncology and In Silico Medicine Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Zografou, 15780, Athens, Greece.
| | - Georgios S Stamatakos
- In Silico Oncology and In Silico Medicine Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Zografou, 15780, Athens, Greece.
| |
Collapse
|
8
|
LeGendre O, Breslin PAS, Foster DA. (-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Mol Cell Oncol 2015; 2:e1006077. [PMID: 26380379 PMCID: PMC4568762 DOI: 10.1080/23723556.2015.1006077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
(-)-Oleocanthal (OC), a phenolic compound present in extra-virgin olive oil (EVOO), has been implicated in the health benefits associated with diets rich in EVOO. We investigated the effect of OC on human cancer cell lines in culture and found that OC induced cell death in all cancer cells examined as rapidly as 30 minutes after treatment in the absence of serum. OC treatment of non-transformed cells suppressed their proliferation but did not cause cell death. OC induced both primary necrotic and apoptotic cell death via induction of lysosomal membrane permeabilization (LMP). We provide evidence that OC promotes LMP by inhibiting acid sphingomyelinase (ASM) activity, which destabilizes the interaction between proteins required for lysosomal membrane stability. The data presented here indicate that cancer cells, which tend to have fragile lysosomal membranes compared to non-cancerous cells, are susceptible to cell death induced by lysosomotropic agents. Therefore, targeting lysosomal membrane stability represents a novel approach for the induction of cancer-specific cell death.
Collapse
Affiliation(s)
- Onica LeGendre
- Department of Biological Sciences; Hunter College of the City University of New York; New York, NY, USA
- Department of Natural Sciences; LaGuardia Community College of the City University of New York; Long Island City, NY, USA
- Correspondence to: David A Foster; ; Onica LeGendre;
| | - Paul AS Breslin
- Rutgers University Department of Nutritional Sciences; New Brunswick, NJ, USA
- Monell Chemical Senses Center; Philadelphia, PA, USA
| | - David A Foster
- Department of Biological Sciences; Hunter College of the City University of New York; New York, NY, USA
- Department of Pharmacology; Weill-Cornell Medical College; New York, NY, USA
- Correspondence to: David A Foster; ; Onica LeGendre;
| |
Collapse
|
9
|
Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem Sci 2012; 38:12-9. [PMID: 23218751 DOI: 10.1016/j.tibs.2012.10.007] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/20/2012] [Accepted: 10/26/2012] [Indexed: 11/21/2022]
Abstract
Multisite phosphorylation modulates the function of regulatory proteins with complex signaling properties and outputs. The retinoblastoma tumor suppressor protein (Rb) is inactivated by cyclin-dependent kinase (Cdk) phosphorylation in normal and cancer cell cycles, so understanding the molecular mechanisms and effects of Rb phosphorylation is imperative. Rb functions in diverse processes regulating proliferation, and it has been speculated that multisite phosphorylation might act as a code in which discrete phosphorylations control specific activities. The idea of an Rb phosphorylation code is evaluated here in light of recent studies of Rb structure and function. Rb inactivation is discussed with an emphasis on how multisite phosphorylation changes Rb structure and associations with protein partners.
Collapse
|
10
|
Sen S, Bunda S, Shi J, Wang A, Mitts TF, Hinek A. Retinoblastoma protein modulates the inverse relationship between cellular proliferation and elastogenesis. J Biol Chem 2011; 286:36580-91. [PMID: 21880723 DOI: 10.1074/jbc.m111.269944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism that leads to the inverse relationship between heightened cellular proliferation and the cessation of elastic fibers production, observed during formation of the arterial occlusions and dermal scars, is not fully understood. Because the retinoblastoma protein (Rb), responsible for cell cycle initiation, has also been implicated in insulin-like growth factor-I-mediated signaling stimulating elastin gene activation, we explored whether differential phosphorylation of Rb by various cyclin·cyclin-dependent kinase complexes would be responsible for promoting either elastogenic or pro-proliferative signals. We first tested cultures of dermal fibroblasts derived from Costello syndrome patients, in which heightened proliferation driven by mutated oncogenic H-Ras coincides with inhibition of elastogenesis. We found that Costello syndrome fibroblasts display elevated level of Rb phosphorylation on serine 780 (Ser(P)-780-Rb) and that pharmacological inhibition of Ras with radicicol, Mek/Erk with PD98059, or cyclin-dependent kinase 4 with PD0332991 not only leads to down-regulation of Ser(P)-780-Rb levels but also enhances Rb phosphorylation on threonine-821 (Thr(P)-821-Rb), which coincides with the recovery of elastin production. Then we demonstrated that treatment of normal skin fibroblasts with the pro-proliferative PDGF BB also up-regulates Ser(P)-780-Rb levels, but treatment with the pro-elastogenic insulin-like growth factor-I activates cyclinE-cdk2 complex to phosphorylate Rb on Thr-821. Importantly, we have established that elevation of Thr(P)-821-Rb promotes Rb binding to the Sp1 transcription factor and that successive binding of the Rb-Sp1 complex to the retinoblastoma control element within the elastin gene promoter stimulates tropoelastin transcription. In summary, we provide novel insight into the role of Rb in mediating the inverse relationship between elastogenesis and cellular proliferation.
Collapse
Affiliation(s)
- Sanjana Sen
- Cardiovascular Research, The Hospital for Sick Children, University of Toronto Toronto M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem Pharmacol 2011; 82:1100-9. [PMID: 21803027 DOI: 10.1016/j.bcp.2011.07.078] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 12/20/2022]
Abstract
The present study was conducted to determine the efficacy of novel flavonoid vicenin-2 (VCN-2), an active constituent of the medicinal herb Ocimum Sanctum Linn or Tulsi, as a single agent and in combination with docetaxel (DTL) in carcinoma of prostate (CaP). VCN-2 effectively induced anti-proliferative, anti-angiogenic and pro-apoptotic effect in CaP cells (PC-3, DU-145 and LNCaP) irrespective of their androgen responsiveness or p53 status. VCN-2 inhibited EGFR/Akt/mTOR/p70S6K pathway along with decreasing c-Myc, cyclin D1, cyclin B1, CDK4, PCNA and hTERT in vitro. VCN-2 reached a level of 2.6±0.3μmol/l in serum after oral administration in mice which reflected that VCN-2 is orally absorbed. The i.v. administration of docetaxel (DTL), current drug of choice in androgen-independent CaP, is associated with dose-limiting toxicities like febrile neutropenia which has lead to characterization of alternate routes of administration and potential combinatorial regimens. In this regard, VCN-2 in combination with DTL synergistically inhibited the growth of prostate tumors in vivo with a greater decrease in the levels of AR, pIGF1R, pAkt, PCNA, cyclin D1, Ki67, CD31, and increase in E-cadherin. VCN-2 has been investigated for radioprotection and anti-inflammatory properties. This is the first study on the anti-cancer effects of VCN-2. In conclusion, our investigations collectively provide strong evidence that VCN-2 is effective against CaP progression along with indicating that VCN-2 and DTL co-administration is more effective than either of the single agents in androgen-independent prostate cancer.
Collapse
|
12
|
Biggar KK, Storey KB. Perspectives in cell cycle regulation: lessons from an anoxic vertebrate. Curr Genomics 2011; 10:573-84. [PMID: 20514219 PMCID: PMC2817888 DOI: 10.2174/138920209789503905] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 01/07/2023] Open
Abstract
The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|