1
|
Heiser CN, Simmons AJ, Revetta F, McKinley ET, Ramirez-Solano MA, Wang J, Kaur H, Shao J, Ayers GD, Wang Y, Glass SE, Tasneem N, Chen Z, Qin Y, Kim W, Rolong A, Chen B, Vega PN, Drewes JL, Markham NO, Saleh N, Nikolos F, Vandekar S, Jones AL, Washington MK, Roland JT, Chan KS, Schürpf T, Sears CL, Liu Q, Shrubsole MJ, Coffey RJ, Lau KS. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 2023; 186:5620-5637.e16. [PMID: 38065082 PMCID: PMC10756562 DOI: 10.1016/j.cell.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.
Collapse
Affiliation(s)
- Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jiawei Wang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Harsimran Kaur
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin Shao
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Gregory D Ayers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Sarah E Glass
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Qin
- Incendia Therapeutics, Inc., Boston, MA 02135, USA
| | - William Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nabil Saleh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fotis Nikolos
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keith S Chan
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
3
|
Chan SH, Ngeow J. Germline mutation contribution to chromosomal instability. Endocr Relat Cancer 2017; 24:T33-T46. [PMID: 28808044 DOI: 10.1530/erc-17-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Genomic instability is a feature of cancer that fuels oncogenesis through increased frequency of genetic disruption, leading to loss of genomic integrity and promoting clonal evolution as well as tumor transformation. A form of genomic instability prevalent across cancer types is chromosomal instability, which involves karyotypic changes including chromosome copy number alterations as well as gross structural abnormalities such as transversions and translocations. Defects in cellular mechanisms that are in place to govern fidelity of chromosomal segregation, DNA repair and ultimately genomic integrity are known to contribute to chromosomal instability. In this review, we discuss the association of germline mutations in these pathways with chromosomal instability in the background of related cancer predisposition syndromes. We will also reflect on the impact of genetic predisposition to clinical management of patients and how we can exploit this vulnerability to promote catastrophic genomic instability as a therapeutic strategy.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical OncologyCancer Genetics Service, National Cancer Centre Singapore, Singapore
| | - Joanne Ngeow
- Division of Medical OncologyCancer Genetics Service, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical ProgramDuke-NUS Medical School Singapore, Singapore
| |
Collapse
|
4
|
Eshghifar N, Farrokhi N, Naji T, Zali M. Tumor suppressor genes in familial adenomatous polyposis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:3-13. [PMID: 28331559 PMCID: PMC5346818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is mostly due to a series of genetic alterations that are being greatly under the influence of the environmental factors. These changes, mutational or epigenetic modifications at transcriptional forefront and/or post-transcriptional effects via miRNAs, include inactivation and the conversion of proto-oncogene to oncogenes, and/or inactivation of tumor suppressor genes (TSG). Here, a thorough review was carried out on the role of TSGs with the focus on the APC as the master regulator, mutated genes and mal-/dysfunctional pathways that lead to one type of hereditary form of the CRC; namely familial adenomatous polyposis (FAP). This review provides a venue towards defining candidate genes that can be used as new PCR-based markers for early diagnosis of FAP. In addition to diagnosis, defining the modes of genetic alterations will open door towards genome editing to either suppress the disease or reduce its progression during the course of action.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | - Naser Farrokhi
- Department of Plant Biology & Biotechnology, Faculty of Biosciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Tahereh Naji
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sakita JY, Gasparotto B, Garcia SB, Uyemura SA, Kannen V. A critical discussion on diet, genomic mutations and repair mechanisms in colon carcinogenesis. Toxicol Lett 2017; 265:106-116. [DOI: 10.1016/j.toxlet.2016.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/09/2016] [Accepted: 11/27/2016] [Indexed: 02/07/2023]
|
6
|
March HN, Rust AG, Wright NA, Hoeve JT, de Ridder J, Eldridge M, van der Weyden L, Berns A, Gadiot J, Uren A, Kemp R, Arends MJ, Wessels LFA, Winton DJ, Adams DJ. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 2011; 43:1202-9. [PMID: 22057237 PMCID: PMC3233530 DOI: 10.1038/ng.990] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 10/03/2011] [Indexed: 12/11/2022]
Abstract
The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development.
Collapse
Affiliation(s)
- H. Nikki March
- Cancer Research-UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 ORE, UK
| | - Alistair G. Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Nicholas A. Wright
- Histopathology Unit, London Research Institute, Cancer Research UK, London WC2A 3PX, UK
| | - Jelle ten Hoeve
- Bioinformatics and Statistics Group, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jeroen de Ridder
- Bioinformatics and Statistics Group, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, 2628 CD, Delft, the Netherlands
| | - Matthew Eldridge
- Cancer Research-UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 ORE, UK
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Anton Berns
- Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jules Gadiot
- Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Anthony Uren
- Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Richard Kemp
- Cancer Research-UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 ORE, UK
| | - Mark J. Arends
- Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Lodewyk F. A. Wessels
- Bioinformatics and Statistics Group, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, 2628 CD, Delft, the Netherlands
| | - Douglas J. Winton
- Cancer Research-UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 ORE, UK
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| |
Collapse
|
7
|
Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Lees JA, Hopkins N. Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proc Natl Acad Sci U S A 2010; 107:16940-5. [PMID: 20837522 PMCID: PMC2947874 DOI: 10.1073/pnas.1011548107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aneuploidy is a hallmark of human cancers, but most mouse cancer models lack the extensive aneuploidy seen in many human tumors. The zebrafish is becoming an increasingly popular model for studying cancer. Here we report that malignant peripheral nerve sheath tumors (MPNSTs) that arise in zebrafish as a result of mutations in either ribosomal protein (rp) genes or in p53 are highly aneuploid. Karyotyping reveals that these tumors frequently harbor near-triploid numbers of chromosomes, and they vary in chromosome number from cell to cell within a single tumor. Using array comparative genomic hybridization, we found that, as in human cancers, certain fish chromosomes are preferentially overrepresented, whereas others are underrepresented in many MPNSTs. In addition, we obtained evidence for recurrent subchromosomal amplifications and deletions that may contain genes involved in cancer initiation or progression. These focal amplifications encompassed several genes whose amplification is observed in human tumors, including met, cyclinD2, slc45a3, and cdk6. One focal amplification included fgf6a. Increasing fgf signaling via a mutation that overexpresses fgf8 accelerated the onset of MPNSTs in fish bearing a mutation in p53, suggesting that fgf6a itself may be a driver of MPNSTs. Our results suggest that the zebrafish is a useful model in which to study aneuploidy in human cancer and in which to identify candidate genes that may act as drivers in fish and potentially also in human tumors.
Collapse
Affiliation(s)
- GuangJun Zhang
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Sebastian Hoersch
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
- Bioinformatics Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Adam Amsterdam
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Charles A. Whittaker
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Jacqueline A. Lees
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Nancy Hopkins
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| |
Collapse
|
8
|
Abstract
After the completion of the human genome, a need was identified by scientists to look for a functional map of the human genome. Epigenomics provided functional characteristics of genes identified in the genome. Epigenetics is the alteration in gene expression (function) without changing the nucleotide sequence. Both activation and inactivation of cancer-associated genes can occur by epigenetic mechanisms. The major players in epigenetic mechanisms of gene regulation are DNA methylation, histone deacetylation, chromatin remodeling, small noncoding RNA expression and gene imprinting. In the last few years, epigenetic mechanisms have been studied in a number of tumor types and epigenetic markers have been identified that are suitable for cancer detection, diagnosis, follow-up of treatment and screening high-risk populations. One interesting aspect of epigenetics is the reactivation of genes by successful reversion of some epigenetic changes using chemicals. The reversibility of epigenetic aberrations has made them attractive targets for cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases, leading to the reactivation of silenced genes. In this article, we have described the current status of this powerful science and discussed the challenges in the clinical fields where epigenetic approaches in cancer are applied.
Collapse
Affiliation(s)
- Hirendra Nath Banerjee
- Department of Biology, Campus Box 930, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA.
| | | |
Collapse
|
9
|
Saffery R, Ellis J, Morley R. A convergent model for placental dysfunction encompassing combined sub-optimal one-carbon donor and vitamin D bioavailability. Med Hypotheses 2009; 73:1023-8. [PMID: 19819084 DOI: 10.1016/j.mehy.2009.03.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 03/18/2009] [Accepted: 03/22/2009] [Indexed: 01/08/2023]
Abstract
We hypothesise that the risk of placental dysfunction/insufficiency rises cumulatively in response to several interdependent risk factors that convergently regulate 1,25-dihydroxyvitamin D (the biologically active form of vitamin D, [1,25-(OH)(2)D]) levels at the feto-maternal interface. These factors include; (i) disturbances in genetic or epigenetic regulation of one-carbon metabolism and/or vitamin D metabolism and (ii) insufficiency in maternal vitamin D or in dietary intake of micronutrients that are involved in one-carbon donation. We predict that the sub-optimal functioning of folate and vitamin D metabolic pathways, in concert, represents a potential novel risk pathway for adverse pregnancy outcomes. We base this prediction on five observations: In order to test this model, future epidemiological studies aimed at identifying risk factors for disorders linked to sub-optimal placental development and functioning, should: (a) measure circulating precursor molecules (including folate, vitamin B12, homocysteine, and vitamin D) in maternal and cord blood; (b) collect samples for examination of genotypic variation in both one-carbon and vitamin D regulatory genes and, (c) collect samples for examination of epigenetic status of genes regulating vitamin D homeostasis and action in the placenta.
Collapse
Affiliation(s)
- Richard Saffery
- Department of Paediatrics, Developmental Epigenetics, Murdoch Childrens Research Institute, University of Melbourne, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
10
|
Halberg RB, Waggoner J, Rasmussen K, White A, Clipson L, Prunuske AJ, Bacher JW, Sullivan R, Washington MK, Pitot HC, Petrini JHJ, Albertson DG, Dove WF. Long-lived Min mice develop advanced intestinal cancers through a genetically conservative pathway. Cancer Res 2009; 69:5768-75. [PMID: 19584276 DOI: 10.1158/0008-5472.can-09-0446] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
C57BL/6J mice carrying the Min allele of Adenomatous polyposis coli (Apc) develop numerous adenomas along the entire length of the intestine and consequently die at an early age. This short lifespan would prevent the accumulation of somatic genetic mutations or epigenetic alterations necessary for tumor progression. To overcome this limitation, we generated F(1) Apc(Min/+) hybrids by crossing C57BR/cdcJ and SWR/J females to C57BL/6J Apc(Min/+) males. These hybrids developed few intestinal tumors and often lived longer than 1 year. Many of the tumors (24-87%) were invasive adenocarcinomas, in which neoplastic tissue penetrated through the muscle wall into the mesentery. In a few cases (3%), lesions metastasized by extension to regional lymph nodes. The development of these familial cancers does not require chromosomal gains or losses, a high level of microsatellite instability, or the presence of Helicobacter. To test whether genetic instability might accelerate tumor progression, we generated Apc(Min/+) mice homozygous for the hypomorphic allele of the Nijmegen breakage syndrome gene (Nbs1(DeltaB)) and also treated Apc(Min/+) mice with a strong somatic mutagen. These imposed genetic instabilities did not reduce the time required for cancers to form nor increase the percentage of cancers nor drive progression to the point of distant metastasis. In summary, we have found that the Apc(Min/+) mouse model for familial intestinal cancer can develop frequent invasive cancers in the absence of overt genomic instability. Possible factors that promote invasion include age-dependent epigenetic changes, conservative somatic recombination, or direct effects of alleles in the F(1) hybrid genetic background.
Collapse
Affiliation(s)
- Richard B Halberg
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alberici P, Gaspar C, Franken P, Gorski MM, de Vries I, Scott RJ, Ristimäki A, Aaltonen LA, Fodde R. Smad4 haploinsufficiency: a matter of dosage. PATHOGENETICS 2008; 1:2. [PMID: 19014666 PMCID: PMC2580039 DOI: 10.1186/1755-8417-1-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/03/2008] [Indexed: 01/16/2023]
Abstract
BACKGROUND The inactivation of tumor suppressor genes follows Alfred Knudson's 'two-hit' model: both alleles need to be inactivated by independent mutation events to trigger tumor formation. However, in a minority of tumor suppressor genes a single hit is sufficient to initiate tumorigenesis notwithstanding the presence of the wild-type allele, a condition known as haploinsufficiency. The SMAD4 gene is an intracellular mediator of the TGF-beta and BMP signal transduction pathways and a tumor suppressor involved in pancreatic and colorectal tumorigenesis. In Smad4-mutant mouse models, haploinsufficiency characterizes the development of gastrointestinal polyps with initial retention of the wild-type allele and protein expression within the nascent tumors and in their direct microenvironment. Similarly, germline SMAD4 mutations are responsible for a subset of patients affected by juvenile polyposis syndrome, an autosomal dominant intestinal cancer syndrome. To date, the molecular and cellular consequences of SMAD4 haploinsufficiency on TGF-beta and BMP signaling and on genome-wide gene expression have not been investigated. RESULTS Here we show that, similar to previous observations in Smad4-mutant mouse models, haploinsufficiency characterizes a substantial fraction of the juvenile polyps arising in patients with germline SMAD4 mutations. Also, mouse embryonic and intestinal cells heterozygous for a targeted Smad4 null mutation are characterized by a corresponding 50% reduction of the Smad4 protein levels. Reporter assays revealed that mouse Smad4+/- cells exert intermediate inhibitory effects on both TGF-beta and BMP signaling. Genome-wide expression profiling analysis of Smad4+/- and Smad4-/- cells pinpointed a subset of dosage-dependent transcriptional target genes encompassing, among others, members of the TGF-beta and Wnt signaling pathways. These SMAD4 dosage-dependent transcriptional changes were confirmed and validated in a subset of target genes in intestinal tissues from juvenile polyposis syndrome patients. CONCLUSION Smad4 haploinsufficiency is sufficient to significantly inhibit both TGF-beta and BMP signal transduction and results in the differential expression of a broad subset of target genes likely to underlie tumor formation both from the mesenchymal and epithelial compartments. The results of our study, performed in normal rather than tumor cells where additional (epi-) genetic alterations may confound the analysis, are relevant for our understanding and elucidation of the initial steps underlying SMAD4-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Paola Alberici
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim JC, Cho YK, Roh SA, Yu CS, Gong G, Jang SJ, Kim SY, Kim YS. Individual tumorigenesis pathways of sporadic colorectal adenocarcinomas are associated with the biological behavior of tumors. Cancer Sci 2008; 99:1348-54. [PMID: 18422752 PMCID: PMC11159463 DOI: 10.1111/j.1349-7006.2008.00819.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinicopathologic features of sporadic colorectal adenocarcinomas were compared using integrated data from 224 [corrected] patients subjected to curative resection. Individual steps in the tumorigenesis pathway, that is, adenomatosis polyposis coli (APC), Wnt-activated, base excision repair mutations, mismatch repair defects, RAF-mediated, transforming growth factor (TGF)-beta-suppressed, bone morphogenic protein (BMP)-suppressed, and p53 alterations, were examined in terms of genetic and epigenetic changes, as well as protein expression. Genetic and molecular alterations of right colon cancers were distinct from those of left colon and rectal cancers. Rectal cancers showed the attenuated phenotype of left colon cancers. Tumors most frequently displayed either TGF-beta- or BMP-suppressed alterations (81.2%), followed by RAF-mediated alterations (78.6%), and mismatch repair defects (38.4%), constituting a total of 24 integrated pathways. Tumors lacking APC mutations or carrying the RAF alteration (V600E) were frequently associated with lymphovascular invasion and lymph node metastasis (P < 0.05). Poorly differentiated or mucinous adenocarcinomas were generally associated with high level microsatellite instability, Axin2 suppression, TGF-beta1 or BMPR1A suppression, loss of heterozygosity of D18S46 or D18S474, and absence of base excision repair mutations (P < 0.0001-0.05). Early tumor recurrence was significantly correlated with lack of APC mutations (P = 0.036). Moreover, tumors that concurrently displayed APC/Wnt-activated, TGF-beta/BMP-suppressed, and p53 alterations were significantly predisposed to early recurrence (P = 0.026). Our data clearly indicate that particular steps or pathways of colorectal tumorigenesis are closely associated with characteristic clinicopathologic features that, in turn, determine biological behavior, such as tumor growth, invasion, and recurrence.
Collapse
Affiliation(s)
- Jin C Kim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 388-1 Poongnap-2-Dong Songpa-Ku, Seoul 138-736, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 2008; 120:3327-35. [PMID: 17881494 DOI: 10.1242/jcs.03485] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adenomatous polyposis coli (APC) gene is a key tumor suppressor gene. Mutations in the gene have been found not only in most colon cancers but also in some other cancers, such as those of the liver. The APC gene product is a 312 kDa protein that has multiple domains, through which it binds to various proteins, including beta-catenin, axin, CtBP, Asefs, IQGAP1, EB1 and microtubules. Studies using mutant mice and cultured cells have demonstrated that APC suppresses canonical Wnt signalling, which is essential for tumorigenesis, development and homeostasis of a variety of cell types, such as epithelial and lymphoid cells. Further studies have suggested that APC plays roles in several other fundamental cellular processes. These include cell adhesion and migration, organization of the actin and microtubule networks, spindle formation and chromosome segregation. Deregulation of these processes caused by mutations in APC is implicated in the initiation and expansion of colon cancer.
Collapse
Affiliation(s)
- Koji Aoki
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
14
|
Abstract
Promoter methylation of the RAS-association domain family 1, isoform A gene (RASSF1A) is one of the most frequent events found in human tumours. In this study we set out to test the hypothesis that loss of Rassf1a can cooperate with inactivation of the adenomatous polyposis coli (Apc) gene to accelerate intestinal tumourigenesis using the Apc-Min (Apc(Min/+)) mouse model, as mutational or deletional inactivation of APC is a frequent early event in the genesis of intestinal cancer. Further, loss of RASSF1A has also been reported to occur in premalignant adenomas of the bowel. RASSF1A has been implicated in an array of pivotal cellular processes, including regulation of the cell cycle, apoptosis, microtubule stability and most recently in the beta-catenin signalling pathway. By interbreeding isoform specific Rassf1a knockout mice with Apc(+/Min) mice, we showed that loss of Rassf1a results in a significant increase in adenomas of the small intestine and accelerated intestinal tumourigenesis leading to the earlier death of adenocarcinoma-bearing mice and decreased overall survival. Comparative genomic hybridization of adenomas from Rassf1a(-/-); Apc(+/Min) mice revealed no evidence of aneuploidy or gross chromosomal instability (no difference to adenomas from Rassf1a(+/+); Apc(+/Min) mice). Immunohistochemical analysis of adenomas revealed increased nuclear beta-catenin accumulation in adenomas from Rassf1a(-/-); Apc(+/Min) mice, compared to those from Rassf1a(+/+); Apc(+/Min) mice, but no differences in proliferation marker (Ki67) staining patterns. Collectively these data demonstrate cooperation between inactivation of Rassf1a and Apc resulting in accelerated intestinal tumourigenesis, with adenomas showing increased nuclear accumulation of beta-catenin, supporting a mechanistic link via loss of the known interaction of Rassf1 with beta-TrCP that usually mediates degradation of beta-catenin.
Collapse
|
15
|
Jones AM, Thirlwell C, Howarth KM, Graham T, Chambers W, Segditsas S, Page KM, Phillips RKS, Thomas HJW, Sieber OM, Sawyer EJ, Tomlinson IPM. Analysis of copy number changes suggests chromosomal instability in a minority of large colorectal adenomas. J Pathol 2007; 213:249-56. [PMID: 17893889 DOI: 10.1002/path.2234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have examined chromosomal-scale mutations in 34 large colorectal adenomas (CRAs). A small number of changes (median = 2, IQR = 0-4) were found by array-comparative genomic hybridization (aCGH) in most tumours. The most common changes were deletions of chromosomes 1p, 9q, 17, 19, and 22, and gains of chromosomes 13 and 21. SNP-LOH analysis and pseudo-digital SNP-PCR analysis detected occasional copy-neutral LOH. Some aCGH changes found frequently in colorectal carcinomas, such as deletions of chromosomes 4q and 18q, were very infrequent in the adenomas. Almost all copy number changes were of small magnitude, far below the predicted levels even for single copy gain/loss; investigation suggested that these changes were either artefactual or occurred in sub-clones within the tumours. In some cases, these sub-clones may have represented progression towards carcinoma, but comparison with aCGH data from carcinomas showed this to be unlikely in most cases. In two adenomas, there was evidence of a large, outlying number of copy number changes, mostly resulting from part-chromosome deletions. Overall, moreover, there was evidence of a tendency towards part-chromosome deletions-consistent with chromosomal instability (CIN)--in about one-sixth of all tumours. However, there was no evidence of CIN in the form of whole-chromosome copy number changes. Our data did not support previous contentions that CRAs tend to show chromosome breakage at fragile sites owing to CIN associated with an elevated DNA damage response. Chromosomal-scale mutations occur in some CRAs; although CIN is not the norm in these lesions, it probably affects a minority of cases.
Collapse
Affiliation(s)
- A M Jones
- Molecular and Population Genetics Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|