1
|
Oswald AJ, Symeonides SN, Wheatley D, Chan S, Brunt AM, McAdam K, Schmid P, Waters S, Poole C, Twelves C, Perren T, Bartlett J, Piper T, Chisholm EM, Welsh M, Hill R, Hopcroft LEM, Barrett-Lee P, Cameron DA. Aromatase inhibition plus/minus Src inhibitor saracatinib (AZD0530) in advanced breast cancer therapy (ARISTACAT): a randomised phase II study. Breast Cancer Res Treat 2023; 199:35-46. [PMID: 36859649 PMCID: PMC10147753 DOI: 10.1007/s10549-023-06873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE The development of oestrogen resistance is a major challenge in managing hormone-sensitive metastatic breast cancer. Saracatinib (AZD0530), an oral Src kinase inhibitor, prevents oestrogen resistance in animal models and reduces osteoclast activity. We aimed to evaluate the efficacy of saracatinib addition to aromatase inhibitors (AI) in patients with hormone receptor-positive metastatic breast cancer. METHODS This phase II multicentre double-blinded randomised trial allocated post-menopausal women to AI with either saracatinib or placebo (1:1 ratio). Patients were stratified into an "AI-sensitive/naïve" group who received anastrozole and "prior-AI" group who received exemestane. Primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate (ORR) and toxicity. RESULTS 140 patients were randomised from 20 UK centres to saracatinib/AI (n = 69) or placebo/AI (n = 71). Saracatinib was not associated with an improved PFS (3.7 months v. 5.6 months placebo/AI) and did not reduce likelihood of bony progression. There was no benefit in OS or ORR. Effects were consistent in "AI-sensitive/naive" and "prior-AI" sub-groups. Saracatinib was well tolerated with dose reductions in 16% and the main side effects were gastrointestinal, hypophosphatemia and rash. CONCLUSION Saracatinib did not improve outcomes in post-menopausal women with metastatic breast cancer. There was no observed beneficial effect on bone metastases. CRUKE/11/023, ISRCTN23804370.
Collapse
Affiliation(s)
| | | | | | - Stephen Chan
- Nottingham University Hospitals NHS Trust, Nottingham, England, UK
| | - Adrian Murray Brunt
- University Hospitals of North Midlands NHS Trust, Stoke-On-Trent & University of Keele, Staffordshire, England, UK
| | - Karen McAdam
- Peterborough City Hospital, Peterborough, England, UK
| | | | - Simon Waters
- Velindre Hospital, Whitchurch, Cardiff, Wales, UK
| | | | - Chris Twelves
- University of Leeds and St James' Hospital, Leeds, England, UK
| | - Timothy Perren
- University of Leeds and St James' Hospital, Leeds, England, UK
| | | | - Tammy Piper
- University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Michelle Welsh
- Scottish Clinical Trials Research Unit, Edinburgh, Scotland, UK
| | - Robert Hill
- Scottish Clinical Trials Research Unit, Edinburgh, Scotland, UK
| | | | | | | |
Collapse
|
2
|
Adan H, Guy S, Arulanandam R, Geletu M, Daniel J, Raptis L. Activated Src requires Cadherin-11, Rac, and gp130 for Stat3 activation and survival of mouse Balb/c3T3 fibroblasts. Cancer Gene Ther 2022; 29:1502-1513. [PMID: 35411090 PMCID: PMC9576600 DOI: 10.1038/s41417-022-00462-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 01/05/2023]
Abstract
We previously demonstrated that engagement of cadherins, cell to cell adhesion molecules, triggers a dramatic increase in levels and activity of the Rac/Cdc42 small GTPases, which is followed by secretion of IL6 family cytokines and activation of their common receptor, gp130, in an autocrine manner. This results in phosphorylation of the Signal Transducer and Activator of Transcription-3 (Stat3) on tyrosine-705, which then dimerizes, migrates to the nucleus, and activates transcription of genes involved in cell division and survival. In the present report we demonstrate that, in mouse Balb/c3T3 fibroblasts, mutationally activated Src527F also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers the Stat3-ptyr705 increase. Interestingly, our results also demonstrate that cadherin-11 is required to preserve gp130 levels for IL6 family signaling. At the same time, however, activated Src527F downregulates cadherin-11, in a quantitative manner. As a result, Src527F expression to intermediate levels allows sufficient cadherin-11, hence gp130 levels for Stat3 activation, as expected. However, expressed to high levels, Src527F eliminates cadherin-11, hence gp130 signaling, thus abolishing Stat3-ptyr705 stimulation. Taken together, these data establish for the first time a loop between Src, cadherin-11, gp130, and Stat3 activation. This fine balance between Src527F and cadherin-11 levels which is required for Stat3 activation and cellular survival could have significant therapeutic implications.
Collapse
Affiliation(s)
- Hanad Adan
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
- Department of Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Stephanie Guy
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Rozanne Arulanandam
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mulu Geletu
- Department of Chemistry, University of Toronto, Mississauga, ON, L5L 1C6, Canada
| | - Juliet Daniel
- Department of Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
3
|
Roads to Stat3 Paved with Cadherins. Cells 2022; 11:cells11162537. [PMID: 36010614 PMCID: PMC9406956 DOI: 10.3390/cells11162537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The engagement of cadherins, cell-to-cell adhesion proteins, triggers a dramatic increase in the levels and activity of the Rac/Cdc42 GTPases, through the inhibition of proteasomal degradation. This leads to an increase in transcription and secretion of IL6 family cytokines, activation of their common receptor, gp130, in an autocrine manner and phosphorylation of the signal transducer and activator of transcription-3 (Stat3) on tyrosine-705 by the Jak kinases. Stat3 subsequently dimerizes, migrates to the nucleus and activates the transcription of genes involved in cell division and survival. The Src oncogene also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers a Stat3-ptyr705 increase. Interestingly, at the same time, Src downregulates cadherins in a quantitative manner, while cadherins are required to preserve gp130 levels for IL6 family signalling. Therefore, a fine balance between Src527F/Rac/IL6 and Src527F/cadherin/gp130 levels is in existence, which is required for Stat3 activation. This further demonstrates the important role of cadherins in the activation of Stat3, through preservation of gp130 function. Conversely, the absence of cadherin engagement correlates with low Stat3 activity: In sparsely growing cells, both gp130 and Stat3-ptyr705 levels are very low, despite the fact that cSrc is active in the FAK (focal adhesion kinase)/cSrc complex, which further indicates that the engagement of cadherins is important for Stat3 activation, not just their presence. Furthermore, the caveolin-1 protein downregulates Stat3 through binding and sequestration of cadherins to the scaffolding domain of caveolin-1. We hypothesize that the cadherins/Rac/gp130 axis may be a conserved pathway to Stat3 activation in a number of systems. This fact could have significant implications in Stat3 biology, as well as in drug testing and development.
Collapse
|
4
|
Byun JA, VanSchouwen B, Parikh N, Akimoto M, McNicholl ET, Melacini G. State-selective frustration as a key driver of allosteric pluripotency. Chem Sci 2021; 12:11565-11575. [PMID: 34667558 PMCID: PMC8447923 DOI: 10.1039/d1sc01753e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Allosteric pluripotency arises when an allosteric effector switches from agonist to antagonist depending on the experimental conditions. For example, the Rp-cAMPS ligand of Protein Kinase A (PKA) switches from agonist to antagonist as the MgATP concentration increases and/or the kinase substrate affinity or concentration decreases. Understanding allosteric pluripotency is essential to design effective allosteric therapeutics with minimal side effects. Allosteric pluripotency of PKA arises from divergent allosteric responses of two homologous tandem cAMP-binding domains, resulting in a free energy landscape for the Rp-cAMPS-bound PKA regulatory subunit R1a in which the ground state is kinase inhibition-incompetent and the kinase inhibition-competent state is excited. The magnitude of the free energy difference between the ground non-inhibitory and excited inhibitory states (ΔGR,Gap) relative to the effective free energy of R1a binding to the catalytic subunit of PKA (ΔGR:C) dictates whether the antagonism-to-agonism switch occurs. However, the key drivers of ΔGR,Gap are not fully understood. Here, by analyzing an R1a mutant that selectively silences allosteric pluripotency, we show that a major determinant of ΔGR,Gap unexpectedly arises from state-selective frustration in the ground inhibition-incompetent state of Rp-cAMPS-bound R1a. Such frustration is caused by steric clashes between the phosphate-binding cassette and the helices preceding the lid, which interact with the phosphate and base of Rp-cAMPS, respectively. These clashes are absent in the excited inhibitory state, thus reducing the ΔGR,Gap to values comparable to ΔGR:C, as needed for allosteric pluripotency to occur. The resulting model of allosteric pluripotency is anticipated to assist the design of effective allosteric modulators. The Rp-cAMPS ligand of protein kinase A switches from agonist to antagonist depending on metabolite and proteomic contexts. We show that the state-selective frustration is a key driver of this allosteric pluripotency phenomenon.![]()
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Nishi Parikh
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Eric Tyler McNicholl
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada .,Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
5
|
Vogel CFA, Lazennec G, Kado SY, Dahlem C, He Y, Castaneda A, Ishihara Y, Vogeley C, Rossi A, Haarmann-Stemmann T, Jugan J, Mori H, Borowsky AD, La Merrill MA, Sweeney C. Targeting the Aryl Hydrocarbon Receptor Signaling Pathway in Breast Cancer Development. Front Immunol 2021; 12:625346. [PMID: 33763068 PMCID: PMC7982668 DOI: 10.3389/fimmu.2021.625346] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to known human carcinogens including dioxins can lead to the promotion of breast cancer. While the repressor protein of the AhR (AhRR) blocks the canonical AhR pathway, the function of AhRR in the development of breast cancer is not well-known. In the current study we examined the impact of suppressing AhR activity using its dedicated repressor protein AhRR. AhRR is a putative tumor suppressor and is silenced in several cancer types, including breast, where its loss correlates with shorter patient survival. Using the AhRR transgenic mouse, we demonstrate that AhRR overexpression opposes AhR-driven and inflammation-induced growth of mammary tumors in two different murine models of breast cancer. These include a syngeneic model using E0771 mammary tumor cells as well as the Polyoma Middle T antigen (PyMT) transgenic model. Further AhRR overexpression or knockout of AhR in human breast cancer cells enhanced apoptosis induced by chemotherapeutics and inhibited the growth of mouse mammary tumor cells. This study provides the first in vivo evidence that AhRR suppresses mammary tumor development and suggests that strategies which lead to its functional restoration and expression may have therapeutic benefit.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Antigens, Polyomavirus Transforming/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- MCF-7 Cells
- Mice, Inbred C57BL
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Time Factors
- Tumor Burden
- Tumor Cells, Cultured
- Mice
Collapse
Affiliation(s)
- Christoph F. A. Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | | | - Sarah Y. Kado
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Carla Dahlem
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yi He
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Alejandro Castaneda
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Christian Vogeley
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Juliann Jugan
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D. Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Chen S, Yang SY, Zeng X, Zhu F, Tan Y, Jiang YY, Chen YZ. Combining kinase inhibitors for optimally co-targeting cancer and drug escape by exploitation of drug target promiscuities. Drug Dev Res 2020; 82:133-142. [PMID: 32931039 DOI: 10.1002/ddr.21738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023]
Abstract
Cancers resist targeted therapeutics by drug-escape signaling. Multitarget drugs co-targeting cancer and drug-escape mediators (DEMs) are clinically advantageous. DEM coverage may be expanded by drug combinations. This work evaluated to what extent the kinase DEMs (KDEMs) can be optimally co-targeted by drug combinations based on target promiscuities of individual drugs. We focused on 41 approved and 28 clinical trial small molecule kinase inhibitor drugs with available experimental kinome and clinical pharmacokinetic data. From the kinome inhibitory profiles of these drugs, drug combinations were assembled for optimally co-targeting an established cancer target (EGFR, HER2, ABL1, or MEK1) and 9-16 target-associated KDEMs at comparable potency levels as that against the cancer target. Each set of two-, three-, and four-drug combinations co-target 36-71%, 44-89%, 50-88%, and 27-55% KDEMs of EGFR, HER2, ABL1, and MEK1, respectively, compared with the 36, 33, 38, and 18% KDEMs maximally co-targeted by an existing drug or drug combination approved or clinically tested for the respective cancer. Some co-targeted KDEMs are not covered by any existing drug or drug combination. Our work suggested that novel drug combinations may be constructed for optimally co-targeting cancer and drug escape by the exploitation of drug target promiscuities.
Collapse
Affiliation(s)
- Shangying Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, China.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng Yong Yang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Feng Zhu
- Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, China
| | - Yu Yang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, China
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Nelson LJ, Wright HJ, Dinh NB, Nguyen KD, Razorenova OV, Heinemann FS. Src Kinase Is Biphosphorylated at Y416/Y527 and Activates the CUB-Domain Containing Protein 1/Protein Kinase C δ Pathway in a Subset of Triple-Negative Breast Cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:484-502. [PMID: 31843498 DOI: 10.1016/j.ajpath.2019.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
Targeted therapeutics are needed for triple-negative breast cancer (TNBC). In this study, we investigated the activation of Src family of cytoplasmic tyrosine kinases (SFKs) and two SFK substrates-CUB-domain containing protein 1 (CDCP1) and protein kinase C δ (PKCδ)-in 56 formalin-fixed, paraffin-embedded (FFPE) TNBCs. Expression of SFK phosphorylated at Y416 (SFK_pY416+) in tumor cells was strongly associated with phosphorylation of CDCP1 and PKCδ (CDCP1_ pY743+ and PKCδ_pY311+), as assessed by immunohistochemistry, indicating increased SFK activity in situ. To enable biochemical analysis, protein extraction from FFPE tissue was optimized. Cleaved CDCP1 isoform (70 kDa) was expressed to a varying degree in all samples but only phosphorylated in TNBC tumor cells that expressed SFK_pY416. Interestingly, active SFK was found to be biphosphorylated (SFK_pY416+/pY527+). Biphosphorylated active SFK was observed more frequently in forkhead box protein A1 (FOXA1)- TNBCs. In addition, in SFK_pY416- samples, FOXA1+ TNBC tended to be SFK_pY527+ (classic inactive SFK), and FOXA1- TNBC tended to be SFK_pY527- (SFK poised for activation). Strong SFK_pY416 staining was also observed in tumor-infiltrating lymphocytes in a subset of TNBCs with high tumor-infiltrating lymphocyte content. This report will facilitate protein biochemical analysis of FFPE tumor samples and justifies the development of therapies targeting the SFK/CDCP1/PKCδ pathway for TNBC treatment.
Collapse
Affiliation(s)
- Luke J Nelson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Heather J Wright
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Nguyen B Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Kevin D Nguyen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California.
| | - F Scott Heinemann
- Department of Pathology, Hoag Memorial Hospital Presbyterian, Newport Beach, California.
| |
Collapse
|
8
|
Economopoulou P, Kotoula V, Koliou GA, Papadopoulou K, Christodoulou C, Pentheroudakis G, Lazaridis G, Arapantoni-Dadioti P, Koutras A, Bafaloukos D, Papakostas P, Patsea H, Pavlakis K, Pectasides D, Kotsakis A, Razis E, Aravantinos G, Samantas E, Kalogeras KT, Economopoulos T, Psyrri A, Fountzilas G. Prognostic Impact of Src, CDKN1B, and JAK2 Expression in Metastatic Breast Cancer Patients Treated with Trastuzumab. Transl Oncol 2019; 12:739-748. [PMID: 30877976 PMCID: PMC6423363 DOI: 10.1016/j.tranon.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND: Src, CDKN1B, and JAK2 play a crucial role in the coordination of cell signaling pathways. In the present study, we aim to investigate the prognostic significance of these biomarkers in HER2-positive metastatic breast cancer (MBC) patients treated with trastuzumab (T). METHODS: Formalin-fixed paraffin-embedded tumor tissue samples from 197 patients with HER2-positive MBC treated with T were retrospectively collected. All tissue samples were centrally assessed for ER, PgR, Ki67, HER2, and PTEN protein expression; EGFR gene amplification; PI3KCA mutational status; and tumor-infiltrating lympocytes density. Src, CDKN1B, and JAK2 mRNA expression was evaluated using quantitative reverse transcription-polymerase chain reaction. RESULTS: Only 133 of the 197 patients (67.5%) were found to be HER2-positive by central assessment. CDKN1B mRNA expression was strongly correlated with Src (rho = 0.71) and JAK2 (rho = 0.54). In HER2-positive patients, low CDKN1B conferred higher risk for progression [hazard ratio (HR) = 1.58, 95% confidence interval (CI) 1.08-2.32, P = .018]. In HER2-negative patients, low Src was associated with longer survival (HR = 0.56, 95% CI 0.32-0.99, P = .045). Upon multivariate analyses, only low CDKN1B and JAK2 mRNA expression remained unfavorable factors for PFS in de novo and relapsed (R)-MBC patients, respectively (HR = 2.36, 95% CI 1.01-5.48, P = .046 and HR = 1.76, 95% CI 1.01-3.06, P = .047, respectively). CONCLUSIONS: Low CDKN1B and JAK2 mRNA expressions were unfavorable prognosticators in a cohort of T-treated MBC patients. Our results suggest that CDKN1B and JAK2, if validated, may serve as prognostic factors potentially implicated in T resistance, which seems to be associated with distinct pathways in de novo and R-MBC.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- Second Department of Internal Medicine, Attikon University Hospital, 1 Rimini St 12462, Haidari, Athens, Greece.
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, University Campus, Building 17B, 54006, Thessaloniki, Greece; Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, University Campus, Building 17B, 54006, Thessaloniki, Greece.
| | - Georgia-Angeliki Koliou
- Section of Biostatistics, Hellenic Cooperative Oncology Group, 18 Hatzikonstanti St, 11524, Athens, Greece.
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, University Campus, Building 17B, 54006, Thessaloniki, Greece.
| | - Christos Christodoulou
- Second Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou St, 185 47, Piraeus, Greece.
| | - George Pentheroudakis
- Department of Medical Oncology, Ioannina University Hospital, Leof. Stavrou Niarchou, 45500, Ioannina, Greece.
| | - Georgios Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Ring Road, Nea Efkarpia, 56450, Thessaloniki, Greece
| | | | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Panepistimioupoli Patron, 26504, Patras, Greece.
| | - Dimitris Bafaloukos
- First department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou St, 185 47, Piraeus, Greece.
| | - Pavlos Papakostas
- Oncology Unit, Hippokration Hospital, 114 Vasilissis Sofias Av, 11527, Athens, Greece.
| | - Helen Patsea
- Department of Pathology, IASSO General Hospital, 264 Mesogion Av, 15562, Athens, Greece
| | - Kitty Pavlakis
- Pathology Department, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, 114 Vasilissis Sofias Av, 11527, Athens, Greece.
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Heraklion, Voutes, 71110, Crete, Greece.
| | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, 4 Erithrou Stavrou St, Marousi, 15123, Athens, Greece.
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Epaminondas Samantas
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Timiou Stavrou, 14564, Kifisia, Athens, Greece.
| | - Konstantine T Kalogeras
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, University Campus, Building 17B, 54006, Thessaloniki, Greece; Translational Research Section, Hellenic Cooperative Oncology Group, 18 Hatzikonstanti St, 11524, Athens, Greece.
| | - Theofanis Economopoulos
- Second Department of Internal Medicine, Attikon University Hospital, 1 Rimini St 12462, Haidari, Athens, Greece.
| | - Amanta Psyrri
- Second Department of Internal Medicine, Attikon University Hospital, 1 Rimini St 12462, Haidari, Athens, Greece.
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, University Campus, Building 17B, 54006, Thessaloniki, Greece; Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
9
|
Down-regulation of cathepsin S and matrix metalloproteinase-9 via Src, a non-receptor tyrosine kinase, suppresses triple-negative breast cancer growth and metastasis. Exp Mol Med 2018; 50:1-14. [PMID: 30185799 PMCID: PMC6123788 DOI: 10.1038/s12276-018-0135-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic breast cancer with poor prognosis. In the present study, we demonstrated that Src, a non-receptor tyrosine kinase, might provide an effective therapeutic strategy to overcome TNBC invasion and metastasis, which are mediated via the synergistic action of the lysosomal enzyme cathepsin S (CTSS) and gelatinase MMP-9. Knock-down of MMP-9 and CTSS using siRNAs resulted in a synergistic suppression of MDA-MB-231 cell invasion, which was similarly observed with pharmacological inhibitors. During the screening of new drug candidates that suppress both CTSS and MMP-9, BJ-2302, a novel 7-azaindolin-2-one derivative, was discovered. Src, an upstream activator of both pathways (PI3K/Akt and Ras/Raf/ERK) responsible for the expression of CTSS and MMP-9, was identified as a high-affinity target of BJ-2302 (IC90: 3.23 µM) through a Src kinase assay and a drug affinity responsive target stability (DARTS) assay. BJ-2302 effectively suppressed MDA-MB-231 cell invasion (Matrigel invasion assay) and metastasis (chorioallantoic membrane assay xenografted with MDA-MB-231-luc2-tdTomato cancer cells). Unlike Z-FL-COCHO (potent CTSS inhibitor), BJ-2302 did not induce any cytotoxicity in MCF-10A normal breast epithelial cells. Additionally, BJ-2302 (1 mg/kg) strongly suppressed TNBC cell proliferation in vitro and tumor growth in a xenograft mouse tumor model. The anti-metastatic and anti-tumor effects of BJ-2302 were superior to those of Z-FL-COCHO (1 mg/kg) or batimastat (30 mg/kg), a pan-MMP inhibitor. In summary, inhibition of Src kinase suppressed TNBC tumor growth and metastasis, and Src inhibitors such as BJ-2302 may constitute a novel therapeutic tool to treat breast cancer that expresses high levels of CTSS and MMP-9.
Collapse
|
10
|
Anbalagan M, Sheng M, Fleischer B, Zhang Y, Gao Y, Hoang V, Matossian M, Burks HE, Burow ME, Collins-Burow BM, Hangauer D, Rowan BG. Dual Src Kinase/Pretubulin Inhibitor KX-01, Sensitizes ERα-negative Breast Cancers to Tamoxifen through ERα Reexpression. Mol Cancer Res 2017; 15:1491-1502. [PMID: 28751463 DOI: 10.1158/1541-7786.mcr-16-0297-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/22/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Unlike breast cancer that is positive for estrogen receptor-α (ERα), there are no targeted therapies for triple-negative breast cancer (TNBC). ERα is silenced in TNBC through epigenetic changes including DNA methylation and histone acetylation. Restoring ERα expression in TNBC may sensitize patients to endocrine therapy. Expression of c-Src and ERα are inversely correlated in breast cancer suggesting that c-Src inhibition may lead to reexpression of ERα in TNBC. KX-01 is a peptide substrate-targeted Src/pretubulin inhibitor in clinical trials for solid tumors. KX-01 (1 mg/kg body weight-twice daily) inhibited growth of tamoxifen-resistant MDA-MB-231 and MDA-MB-157 TNBC xenografts in nude mice that was correlated with Src kinase inhibition. KX-01 also increased ERα mRNA and protein, as well as increased the ERα targets progesterone receptor (PR), pS2 (TFF1), cyclin D1 (CCND1), and c-myc (MYC) in MDA-MB-231 and MDA-MB-468, but not MDA-MB-157 xenografts. MDA-MB-231 and MDA-MB-468 tumors exhibited reduction in mesenchymal markers (vimentin, β-catenin) and increase in epithelial marker (E-cadherin) suggesting mesenchymal-to-epithelial transition (MET). KX-01 sensitized MDA-MB-231 and MDA-MB-468 tumors to tamoxifen growth inhibition and tamoxifen repression of the ERα targets pS2, cyclin D1, and c-myc. Chromatin immunoprecipitation (ChIP) of the ERα promoter in KX-01-treated tumors demonstrated enrichment of active transcription marks (acetyl-H3, acetyl-H3Lys9), dissociation of HDAC1, and recruitment of RNA polymerase II. Methylation-specific PCR and bisulfite sequencing demonstrated no alteration in ERα promoter methylation by KX-01. These data demonstrate that in addition to Src kinase inhibition, peptidomimetic KX-01 restores ERα expression in TNBC through changes in histone acetylation that sensitize tumors to tamoxifen.Implications: Src kinase/pretubulin inhibitor KX-01 restores functional ERα expression in ERα- breast tumors, a novel treatment strategy to treat triple-negative breast cancer. Mol Cancer Res; 15(11); 1491-502. ©2017 AACR.
Collapse
Affiliation(s)
- Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Mei Sheng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Brian Fleischer
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Yifang Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Obstetrics and Gynecology, Affiliated Hospital of Taishan Medical University, Taishan, Shandong, China
| | - Yuanjun Gao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Van Hoang
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Margarite Matossian
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hope E Burks
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David Hangauer
- Athenex Pharmaceuticals LLC, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Brian G Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
11
|
Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat Commun 2017; 8:15237. [PMID: 28508872 PMCID: PMC5440822 DOI: 10.1038/ncomms15237] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
Studies of the role of actin in tumour progression have highlighted its key contribution in cell softening associated with cell invasion. Here, using a human breast cell line with conditional Src induction, we demonstrate that cells undergo a stiffening state prior to acquiring malignant features. This state is characterized by the transient accumulation of stress fibres and upregulation of Ena/VASP-like (EVL). EVL, in turn, organizes stress fibres leading to transient cell stiffening, ERK-dependent cell proliferation, as well as enhancement of Src activation and progression towards a fully transformed state. Accordingly, EVL accumulates predominantly in premalignant breast lesions and is required for Src-induced epithelial overgrowth in Drosophila. While cell softening allows for cancer cell invasion, our work reveals that stress fibre-mediated cell stiffening could drive tumour growth during premalignant stages. A careful consideration of the mechanical properties of tumour cells could therefore offer new avenues of exploration when designing cancer-targeting therapies. When cells acquire a malignant phenotype they become less stiff and this helps migration and invasion favouring metastasis. Here the authors show that Src-driven cell transformation and transition to a less stiff state follows an event of membrane stiffening due to stress fibres accumulation.
Collapse
|
12
|
Mitri Z, Nanda R, Blackwell K, Costelloe CM, Hood I, Wei C, Brewster AM, Ibrahim NK, Koenig KB, Hortobagyi GN, Van Poznak C, Rimawi MF, Moulder-Thompson S. TBCRC-010: Phase I/II Study of Dasatinib in Combination with Zoledronic Acid for the Treatment of Breast Cancer Bone Metastasis. Clin Cancer Res 2016; 22:5706-5712. [PMID: 27166393 DOI: 10.1158/1078-0432.ccr-15-2845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Osteoclast-mediated bone resorption through src kinase releases growth factors, sustaining bone metastases. This trial determined the recommended phase II dose (RP2D) and clinical efficacy of the src kinase inhibitor dasatinib combined with zoledronic acid in bone predominant, HER2-negative breast cancer metastases. EXPERIMENTAL DESIGN A 3+3 lead in phase I design confirmed the RP2D allowing activation of the single-arm, phase II trial. Zoledronic acid was administered intravenously on day 1, and dasatinib was given orally once daily for 28 days each cycle as twice daily administration caused dose-limiting toxicity (DLT). Response was assessed every three cycles. N-telopeptide (NTx) was serially measured. RESULTS A total of 25 patients were enrolled. No DLTs were noted at the RP2D of dasatinib = 100 mg/d. Common adverse events were grade 1-2: rash (9/25, 36%), fatigue (9/25, 36%), pain (9/25, 36%), nausea (6/25, 20%). The objective response rate in bone was 5/22 (23%), all partial responses (PR). The clinical benefit rate [PRs + stable disease (SD) ≥ 6 months] in bone was 8/22 (36%). Median time to treatment failure was 2.70 months [95% confidence interval (CI), 1.84-5.72] in the general cohort, 3.65 months (95% CI, 1.97-7.33) in patients with hormone receptor (HR)-positive breast cancer and 0.70 months (95% CI, 0.30-NA) in those with HR-negative disease. Factors associated with response in bone included lower tumor grade, HR-positive status, and pretreatment high NTx levels. CONCLUSIONS Combination therapy was well tolerated and produced responses in bone in patients with HR-positive tumors. Clin Cancer Res; 22(23); 5706-12. ©2016 AACR.
Collapse
Affiliation(s)
- Zahi Mitri
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rita Nanda
- The University of Chicago, Chicago, Illinois
| | | | | | - Ilona Hood
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Nuhad K Ibrahim
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | |
Collapse
|
13
|
Kravchenko DS, Frolova EI, Kravchenko JE, Chumakov SP. Role of PDLIM4 and c-Src in breast cancer progression. Mol Biol 2016. [DOI: 10.1134/s002689331601009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
FAK tyrosine 407 organized with integrin αVβ5 in Hs578Ts(i)8 advanced triple-negative breast cancer cells. Int J Oncol 2016; 48:2043-54. [PMID: 26984508 DOI: 10.3892/ijo.2016.3422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/11/2016] [Indexed: 11/05/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase known to promote cell migration and invasiveness. Overexpression and increased activity of FAK are closely associated with metastatic breast tumors and are linked to poor prognosis. This study discovered an inverse correlation between FAK activity and migratory and invasive behavior. We show decreased phosphorylation levels of FAK at tyrosine residues 397 and 861, and most prominently at Y407, in the more invasive Hs578Ts(i)8 subclone of the Hs578T breast cancer progression model. There is limited information available on FAK Y407, and here we demonstrate its presence in triple-negative breast cancer (TNBC) cell lines. Furthermore, our studies propose that localization of FAK Y407, rather than FAK expression and overall FAK Y407 phosphorylation levels, is crucial for the control of cell motility. FAK Y407 is found extensively at the cell periphery in focal adhesion-like structures at each end of actin stress fibers and organized with integrin αVβ5 receptors, linking the αVβ5 integrin-mediated migratory behavior of Hs578Ts(i)8 cells to FAK Y407. These data suggest that subcellular localization, next to expression and activity levels, are important for understanding TNBC progression. Such an approach opens new avenues for further studies and may provide novel insight for the classification of TNBC and facilitate the discovery of effective biomarkers for diagnosis and therapy of TNBC.
Collapse
|
15
|
Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 2015; 10:e0116891. [PMID: 25607819 PMCID: PMC4301649 DOI: 10.1371/journal.pone.0116891] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Breast cancers that express estrogen receptor alpha (ERα+) constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ERα+ tumors also result in the most breast cancer mortalities. Other factors, including altered characteristics of the extracellular matrix such as density and orientation and consequences for estrogen crosstalk with other hormones such as prolactin (PRL), may contribute to these poor outcomes. Here we employed defined three dimensional low density/compliant and high density/stiff collagen-I matrices to investigate the effects on 17β-estradiol (E2) activity and PRL/E2 interactions in two well-characterized ERα+/PRLR+ luminal breast cancer cell lines in vitro. We demonstrate that matrix density modulated E2-induced transcripts, but did not alter the growth response. However, matrix density was a potent determinant of the behavioral outcomes of PRL/E2 crosstalk. High density/stiff matrices enhanced PRL/E2-induced growth mediated by increased activation of Src family kinases and insensitivity to the estrogen antagonist, 4-hydroxytamoxifen. It also permitted these hormones in combination to drive invasion and modify the alignment of collagen fibers. In contrast, low density/compliant matrices allowed modest if any cooperation between E2 and PRL to growth and did not permit hormone-induced invasion or collagen reorientation. Our studies demonstrate the power of matrix density to determine the outcomes of hormone actions and suggest that stiff matrices are potent collaborators of estrogen and PRL in progression of ERα+ breast cancer. Our evidence for bidirectional interactions between these hormones and the extracellular matrix provides novel insights into the regulation of the microenvironment of ERα+ breast cancer and suggests new therapeutic approaches.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth C Holt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin W Eliceiri
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Papa A, Caruso D, Tomao S, Rossi L, Zaccarelli E, Tomao F. Triple-negative breast cancer: investigating potential molecular therapeutic target. Expert Opin Ther Targets 2014; 19:55-75. [PMID: 25307277 DOI: 10.1517/14728222.2014.970176] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) makes up about 10 - 20% of all breast cancers and the lack of hormone receptors and human epidermal growth factor receptor-2/Neu expression is responsible for poor prognosis, no targeted therapies and trouble in the clinical management. Tumor heterogeneity, also within the same tumor, is a major cause for this difficulty. Based on the introduction of new biological drugs against different kinds of tumor, many efforts have been made for classification of genetic alterations present in TNBC, leading to the identification of several oncogenes and tumor suppressor genes involved in breast cancer carcinogenesis. AREAS COVERED In this review we investigated the molecular alteration present in TNBC which could lead to the creation of new targeted therapies in the future, with the aim to counteract this disease in the most effective way. EXPERT OPINION In this context some hormone receptors like G-protein-coupled receptor 30 and androgen receptors may be a fascinating area to investigate; also, angiogenesis, represented not only by the classical VEGF/VEGFR relationship, but also by other molecules, like semaphorins, fibroblast growth factor and heparin-binding-EGF-like, is a mechanism in which new developments are expected. In this perspective, one technique that may show promise is the gene therapy; in particular the gene transfer could correct abnormal genetic function in cancer cells.
Collapse
Affiliation(s)
- Anselmo Papa
- Faculty of Pharmacy and Medicine, "Sapienza" University of Rome, Oncology Unit - ICOT, Via Franco Faggiana, 1668, Department of medico-surgical sciences and biotechnologies , Latina , Italy +3907736513342 ;
| | | | | | | | | | | |
Collapse
|
17
|
Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, Lim E, Liu W, Bronson RT, Bowden M, Brock J, Krop IE, Dillon DA, Gygi SP, Mills GB, Richardson AL, Signoretti S, Yaffe MB, Kaelin WG. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell 2014; 26:222-34. [PMID: 25117710 PMCID: PMC4169234 DOI: 10.1016/j.ccr.2014.06.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/09/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022]
Abstract
Oncoproteins and tumor suppressors antagonistically converge on critical nodes governing neoplastic growth, invasion, and metastasis. We discovered that phosphorylation of the ETS1 and ETS2 transcriptional oncoproteins at specific serine or threonine residues creates binding sites for the COP1 tumor suppressor protein, which is an ubiquitin ligase component, leading to their destruction. In the case of ETS1, however, phosphorylation of a neighboring tyrosine residue by Src family kinases disrupts COP1 binding, thereby stabilizing ETS1. Src-dependent accumulation of ETS1 in breast cancer cells promotes anchorage-independent growth in vitro and tumor growth in vivo. These findings expand the list of potential COP1 substrates to include proteins whose COP1-binding sites are subject to regulatory phosphorylation and provide insights into transformation by Src family kinases.
Collapse
Affiliation(s)
- Gang Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Qing Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ying Huang
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ross Tomaino
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Ehrenberger
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elgene Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Wenbin Liu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela Bowden
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jane Brock
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael B Yaffe
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
18
|
Hosford SR, Miller TW. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:203-15. [PMID: 25206307 PMCID: PMC4157397 DOI: 10.2147/pgpm.s52762] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancers expressing estrogen receptor α, progesterone receptor, or the human epidermal growth factor receptor 2 (HER2) proto-oncogene account for approximately 90% of cases, and treatment with antiestrogens and HER2-targeted agents has resulted in drastically improved survival in many of these patients. However, de novo or acquired resistance to antiestrogen and HER2-targeted therapies is common, and many tumors will recur or progress despite these treatments. Additionally, the remaining 10% of breast tumors are negative for estrogen receptor α, progesterone receptor, and HER2 (“triple-negative”), and a clinically proven tumor-specific drug target for this group has not yet been identified. Therefore, the identification of new therapeutic targets in breast cancer is of vital clinical importance. Preclinical studies elucidating the mechanisms driving resistance to standard therapies have identified promising targets including cyclin-dependent kinase 4/6, phosphoinositide 3-kinase, poly adenosine diphosphate–ribose polymerase, Src, and histone deacetylase. Herein, we discuss the clinical potential and status of new therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Sarah R Hosford
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA ; Comprehensive Breast Cancer Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
19
|
PKA signaling drives mammary tumorigenesis through Src. Oncogene 2014; 34:1160-73. [PMID: 24662820 DOI: 10.1038/onc.2014.41] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/30/2022]
Abstract
Protein kinase A (PKA) hyperactivation causes hereditary endocrine neoplasias; however, its role in sporadic epithelial cancers is unknown. Here, we show that heightened PKA activity in the mammary epithelium generates tumors. Mammary-restricted biallelic ablation of Prkar1a, which encodes for the critical type-I PKA regulatory subunit, induced spontaneous breast tumors characterized by enhanced type-II PKA activity. Downstream of this, Src phosphorylation occurs at residues serine-17 and tyrosine-416 and mammary cell transformation is driven through a mechanism involving Src signaling. The phenotypic consequences of these alterations consisted of increased cell proliferation and, accordingly, expansion of both luminal and basal epithelial cell populations. In human breast cancer, low PRKAR1A/high SRC expression defines basal-like and HER2 breast tumors associated with poor clinical outcome. Together, the results of this study define a novel molecular mechanism altered in breast carcinogenesis and highlight the potential strategy of inhibiting SRC signaling in treating this cancer subtype in humans.
Collapse
|
20
|
Brand TM, Iida M, Dunn EF, Luthar N, Kostopoulos KT, Corrigan KL, Wleklinski MJ, Yang D, Wisinski KB, Salgia R, Wheeler DL. Nuclear epidermal growth factor receptor is a functional molecular target in triple-negative breast cancer. Mol Cancer Ther 2014; 13:1356-68. [PMID: 24634415 DOI: 10.1158/1535-7163.mct-13-1021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subclass of breast cancers (i.e., estrogen receptor-negative, progesterone receptor-negative, and HER2-negative) that have poor prognosis and very few identified molecular targets. Strikingly, a high percentage of TNBCs overexpresses the EGF receptor (EGFR), yet EGFR inhibition has yielded little clinical benefit. Over the last decade, advances in EGFR biology have established that EGFR functions in two distinct signaling pathways: (i) classical membrane-bound signaling and (ii) nuclear signaling. Previous studies have demonstrated that nuclear EGFR (nEGFR) can enhance resistance to anti-EGFR therapies and is correlated with poor overall survival in breast cancer. On the basis of these findings, we hypothesized that nEGFR may promote intrinsic resistance to cetuximab in TNBC. To examine this question, a battery of TNBC cell lines and human tumors were screened and found to express nEGFR. Knockdown of EGFR expression demonstrated that TNBC cell lines retained dependency on EGFR for proliferation, yet all cell lines were resistant to cetuximab. Furthermore, Src Family Kinases (SFKs) influenced nEGFR translocation in TNBC cell lines and in vivo tumor models, where inhibition of SFK activity led to potent reductions in nEGFR expression. Inhibition of nEGFR translocation led to a subsequent accumulation of EGFR on the plasma membrane, which greatly enhanced sensitivity of TNBC cells to cetuximab. Collectively, these data suggest that targeting both the nEGFR signaling pathway, through the inhibition of its nuclear transport, and the classical EGFR signaling pathway with cetuximab may be a viable approach for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Toni M Brand
- Authors' Affiliations: Departments of Human Oncology and Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; and Division of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Elsberger B. Translational evidence on the role of Src kinase and activated Src kinase in invasive breast cancer. Crit Rev Oncol Hematol 2014; 89:343-51. [DOI: 10.1016/j.critrevonc.2013.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022] Open
|
22
|
El Touny LH, Vieira A, Mendoza A, Khanna C, Hoenerhoff MJ, Green JE. Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J Clin Invest 2013; 124:156-68. [PMID: 24316974 DOI: 10.1172/jci70259] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/03/2013] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) can recur as metastatic disease many years after primary tumor removal, suggesting that disseminated tumor cells survive for extended periods in a dormant state that is refractory to conventional therapies. We have previously shown that altering the tumor microenvironment through fibrosis with collagen and fibronectin deposition can trigger tumor cells to switch from a dormant to a proliferative state. Here, we used an in vivo preclinical model and a 3D in vitro model of dormancy to evaluate the role of Src family kinase (SFK) in regulating this dormant-to-proliferative switch. We found that pharmacological inhibition of SFK signaling or Src knockdown results in the nuclear localization of cyclin-dependent kinase inhibitor p27 and prevents the proliferative outbreak of dormant BC cells and metastatic lesion formation; however, SFK inhibition did not kill dormant cells. Dormant cell proliferation also required ERK1/2 activation. Combination treatment of cells undergoing the dormant-to-proliferative switch with the Src inhibitor (AZD0530) and MEK1/2 inhibitor (AZD6244) induced apoptosis in a large fraction of the dormant cells and delayed metastatic outgrowth, neither of which was observed with either inhibitor alone. Thus, targeting Src prevents the proliferative response of dormant cells to external stimuli, but requires MEK1/2 inhibition to suppress their survival. These data indicate that treatments targeting Src in combination with MEK1/2 may prevent BC recurrence.
Collapse
|
23
|
Karim SA, Creedon H, Patel H, Carragher NO, Morton JP, Muller WJ, Evans TR, Gusterson B, Sansom OJ, Brunton VG. Dasatinib inhibits mammary tumour development in a genetically engineered mouse model. J Pathol 2013; 230:430-40. [PMID: 23616343 DOI: 10.1002/path.4202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
Src family kinase activity is elevated in a number of human cancers including breast cancer. This increased activity has been associated with aggressive disease and poor prognosis. Src inhibitors are currently in clinical development with a number of trials currently assessing their activity in breast cancer. However, the results to date have been disappointing and a further evaluation of the preclinical effects of Src inhibitors is required to help establish whether these agents will be useful in the treatment of breast cancer. In this study we investigate the effects of dasatinib, which is a potent inhibitor of Src family kinases, on the initiation and development of breast cancer in a genetically engineered model of the disease. The mouse model utilized is driven by expression of activated ErbB-2 under the transcriptional control of its endogenous promoter coupled with conditional loss of Pten under the control of Cre recombinase expressed by the BLG promoter. We show that daily oral administration of dasatinib delays tumour onset and increases overall survival but does not inhibit the proliferation of established tumours. The striking difference between the dasatinib-treated group of tumours and the vehicle controls was the prominent squamous metaplasia that was seen in six out of 11 dasatinib-treated tumours. This was accompanied by a dramatic up-regulation of both E-cadherin and β-catenin and down-regulation of ErbB-2 in the dasatinib-treated tumours. Dasatinib also inhibited both the migration and the invasion of tumour-derived cell lines in vitro. Together these data support the argument that benefits of Src inhibitors may predominate in early or even pre-invasive disease.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Dasatinib
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Genes, erbB-2
- Integrases/genetics
- Integrases/metabolism
- Lactoglobulins/genetics
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasm Invasiveness
- PTEN Phosphohydrolase/deficiency
- PTEN Phosphohydrolase/genetics
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Thiazoles/administration & dosage
- Thiazoles/pharmacology
- Time Factors
- beta Catenin/genetics
- beta Catenin/metabolism
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Saadia A Karim
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Qayyum T, McArdle PA, Lamb GW, Jordan F, Orange C, Seywright M, Horgan PG, Jones RJ, Oades G, Aitchison MA, Edwards J. Expression and prognostic significance of Src family members in renal clear cell carcinoma. Br J Cancer 2012; 107:856-63. [PMID: 22814579 PMCID: PMC3426751 DOI: 10.1038/bjc.2012.314] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to determine whether Src family kinases (SFK) are expressed in renal cell cancer and to assess their prognostic significance. METHODS mRNA expression levels were investigated for the 8 SFK members by quantitative real-time PCR in 19 clear cell cancer tissue samples. Immunohistochemical staining was utilised to assess expression of Src kinase, dephosphorylated Src kinase at Y(530) (SrcY(530)), phosphorylated Src at Y(419) (SrcY(419)) and the downstream focal adhesion kinase (FAK) marker at the Y(861) site (FAK Y(861)) in a cohort of 57 clear cell renal cancer specimens. Expression was assessed using the weighted histoscore method. RESULTS Src, Lyn, Hck, Fgr and Fyn were the most highly expressed in renal cancer. All members were more highly expressed in T2 disease, and furthermore expression levels between T2 and T3 disease showed a significant decrease for Lck, Lyn, Fyn, Blk and Yes (P=0.032). Assessment of membrane, cytoplasm and nuclear expression of Src kinase, SrcY(530) and SrcY(419) were not significantly associated with cancer-specific survival. High expression of cytoplasmic FAK Y(861) was associated with decreased cancer-specific survival (P=0.001). On multivariate analysis, cytoplasmic FAK Y(861) was independently associated with cancer-specific survival (hazard ratio 3.35, 95% CI 1.40-7.98, P=0.006). CONCLUSION We have reported that all SFK members are expressed in renal cell carcinoma. The SFK members had their highest levels of expression before the disease no longer being organ confined. We hypothesise that these SFK members are upregulated before the cancer spreading out-with the organ and given that Src itself is not associated with cancer-specific survival but the presence of FAK Y(861), a downstream marker for SFK member activity is associated with decreased cancer-specific survival, we hypothesise that another SFK member is associated with decreased cancer-specific survival in renal cell cancer.
Collapse
Affiliation(s)
- T Qayyum
- Unit of Experimental Therapeutics, Institute of Cancer, College of MVLS, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Anbalagan M, Ali A, Jones RK, Marsden CG, Sheng M, Carrier L, Bu Y, Hangauer D, Rowan BG. Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts. Mol Cancer Ther 2012; 11:1936-47. [PMID: 22784709 DOI: 10.1158/1535-7163.mct-12-0146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Src kinase is elevated in breast tumors that are ER/PR negative and do not overexpress HER2, but clinical trials with Src inhibitors have shown little activity. The present study evaluated preclinical efficacy of a novel peptidomimetic compound, KX-01 (KX2-391), that exhibits dual action as an Src and pretubulin inhibitor. KX-01 was evaluated as a single-agent and in combination with paclitaxel in MDA-MB-231, MDA-MB-157, and MDA-MB-468 human ER/PR/HER2-negative breast cancer cells. Treatments were evaluated by growth/apoptosis, isobologram analysis, migration/invasion assays, tumor xenograft volume, metastasis, and measurement of Src, focal adhesion kinase (FAK), microtubules, Ki67, and microvessel density. KX-01 inhibited cell growth in vitro and in combination with paclitaxel resulted in synergistic growth inhibition. KX-01 resulted in a dose-dependent inhibition of MDA-MB-231 and MDA-MB-157 tumor xenografts (1 and 5 mg/kg, twice daily). KX-01 inhibited activity of Src and downstream mediator FAK in tumors that was coincident with reduced proliferation and angiogenesis and increased apoptosis. KX01 also resulted in microtubule disruption in tumors. Combination of KX-01 with paclitaxel resulted in significant regression of MDA-MB-231 tumors and reduced metastasis to mouse lung and liver. KX-01 is a potently active Src/pretubulin inhibitor that inhibits breast tumor growth and metastasis. As ER/PR/HER2-negative patients are candidates for paclitaxel therapy, combination with KX-01 may potentiate antitumor efficacy in management of this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Muralidharan Anbalagan
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cavalloni G, Peraldo-Neia C, Sarotto I, Gammaitoni L, Migliardi G, Soster M, Marchiò S, Aglietta M, Leone F. Antitumor activity of Src inhibitor saracatinib (AZD-0530) in preclinical models of biliary tract carcinomas. Mol Cancer Ther 2012; 11:1528-38. [PMID: 22452946 DOI: 10.1158/1535-7163.mct-11-1020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biliary tract carcinoma (BTC) has a poor prognosis due to limited treatment options. There is, therefore, an urgent need to identify new targets and to design innovative therapeutic approaches. Among potential candidate molecules, we evaluated the nonreceptor tyrosine kinase Src, observing promising antitumor effects of its small-molecule inhibitor saracatinib in BTC preclinical models. The presence of an active Src protein was investigated by immunohistochemistry in 19 surgical samples from patients with BTC. Upon saracatinib treatment, the phosphorylation of Src and of its downstream transducers was evaluated in the BTC cell lines TFK-1, EGI-1, HuH28, and TGBC1-TKB. The effect of saracatinib on proliferation and migration was analyzed in these same cell lines, and its antitumor activity was essayed in EGI-1 mouse xenografts. Saracatinib-modulated transcriptome was profiled in EGI-1 cells and in tumor samples of the xenograft model. Src was activated in about 80% of the human BTC samples. In cultured BTC cell lines, low-dose saracatinib counteracted the activation of Src and of its downstream effectors, increased the fraction of cells in G(0)-G(1) phase, and inhibited cell migration. At high concentrations (median dose from 2.26-6.99 μmol/L), saracatinib was also capable of inhibiting BTC cell proliferation. In vivo, saracatinib treatment resulted in delayed tumor growth, associated with an impaired vascular network. Here, we provide a demonstration that the targeted inhibition of Src kinase by saracatinib is of therapeutic benefit in preclinical models of BTC. We propose our results as a basis for the design of saracatinib-based clinical applications.
Collapse
Affiliation(s)
- Giuliana Cavalloni
- Department of Medical Oncology, University of Turin Medical School, Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Anbalagan M, Moroz K, Ali A, Carrier L, Glodowski S, Rowan BG. Subcellular localization of total and activated Src kinase in African American and Caucasian breast cancer. PLoS One 2012; 7:e33017. [PMID: 22457730 PMCID: PMC3310861 DOI: 10.1371/journal.pone.0033017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/03/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Src, a non-receptor tyrosine kinase is elevated in cancer with expression and activity correlated with cell proliferation, adhesion, survival, motility, metastasis and angiogenesis. There is limited data on Src expression and subcellular localization in breast cancer and no information about expression in racial/ethnic groups. METHODOLOGY/PRINCIPAL FINDINGS The present study evaluated Src expression, activity, and subcellular localization in triple negative breast cancer (TNBC) and ERα positive breast cancer (ER+BC), cancer tissue and adjacent normal epithelial ducts, and Caucasian and African American cases. 79 paraffin embedded breast carcinoma cases were obtained from Tulane University Hospital between 2007-2009. 39 cases represented TNBC (33-African Americans, 4-Caucasians, 2-unknowns) and 40 cases represented ER+BC (21-African Americans, 16-Caucasians, 3-unknowns). Immunohistochemistry was used to measure staining distribution and intensity of total Src and activated phospho-SrcY416 (p-Y416Src) in carcinoma tissue and adjacent normal mammary ducts. In TNBC and ER+BC, total Src was significantly higher in cancer compared to adjacent normal ducts (P<0.0001) in both cell membrane and cytoplasm. In membranes, p-Y416Src was elevated in cancer compared to normal ducts. Total Src in the tumor cytoplasm was significantly higher in TNBC compared to ER+BC (P = 0.0028); conversely, p-Y416Src in the tumor cell membranes was higher in TNBC compared to ER+BC (P = 0.0106). Comparison between African American (n = 21) and Caucasian ER+BC (n = 16) revealed no significant difference in expression and localization of total Src and p-Y416Src. TNBC cases positive for lymph node metastasis showed elevated membrane p-Y416Src compared to lymph node negative TNBC (P = 0.027). CONCLUSION/SIGNIFICANCE Total Src and p-Y416Src were expressed higher in cancer compared to adjacent normal ducts. Cytoplasmic total Src and membrane p-Y416Src were significantly higher in TNBC compared to ER+BC. TNBC cases with lymph node metastasis showed elevated membrane p-Y416Src. Taken together, Src was elevated in the membrane and cytoplasm of more aggressive TNBC.
Collapse
Affiliation(s)
- Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Krzysztof Moroz
- Section of Surgical Pathology and Cytopathology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Alaa Ali
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Latonya Carrier
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Seth Glodowski
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
28
|
Mak H, Naba A, Varma S, Schick C, Day A, SenGupta SK, Arpin M, Elliott BE. Ezrin phosphorylation on tyrosine 477 regulates invasion and metastasis of breast cancer cells. BMC Cancer 2012; 12:82. [PMID: 22397367 PMCID: PMC3372425 DOI: 10.1186/1471-2407-12-82] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 03/07/2012] [Indexed: 11/11/2022] Open
Abstract
Background The membrane cytoskeletal crosslinker, ezrin, a member of the ERM family of proteins, is frequently over-expressed in human breast cancers, and is required for motility and invasion of epithelial cells. Our group previously showed that ezrin acts co-operatively with the non-receptor tyrosine kinase, Src, in deregulation of cell-cell contacts and scattering of epithelial cells. In particular, ezrin phosphorylation on Y477 by Src is specific to ezrin within the ERM family, and is required for HGF-induced scattering of epithelial cells. We therefore sought to examine the role of Y477 phosphorylation in ezrin on tumor progression. Methods Using a highly metastatic mouse mammary carcinoma cell line (AC2M2), we tested the effect of over-expressing a non-phosphorylatable form of ezrin (Y477F) on invasive colony growth in 3-dimensional Matrigel cultures, and on local invasion and metastasis in an orthotopic engraftment model. Results AC2M2 cells over-expressing Y477F ezrin exhibited delayed migration in vitro, and cohesive round colonies in 3-dimensional Matrigel cultures, compared to control cells that formed invasive colonies with branching chains of cells and numerous actin-rich protrusions. Moreover, over-expression of Y477F ezrin inhibits local tumor invasion in vivo. Whereas orthotopically injected wild type AC2M2 tumor cells were found to infiltrate into the abdominal wall and visceral organs within three weeks, tumors expressing Y477F ezrin remained circumscribed, with little invasion into the surrounding stroma and abdominal wall. Additionally, Y477F ezrin reduces the number of lung metastatic lesions. Conclusions Our study implicates a role of Y477 ezrin, which is phosphorylated by Src, in regulating local invasion and metastasis of breast carcinoma cells, and provides a clinically relevant model for assessing the Src/ezrin pathway as a potential prognostic/predictive marker or treatment target for invasive human breast cancer.
Collapse
Affiliation(s)
- Hannah Mak
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Qayyum T, Fyffe G, Duncan M, McArdle PA, Hilmy M, Orange C, Halbert G, Seywright M, Horgan PG, Underwood MA, Edwards J. The interrelationships between Src, Cav-1 and RhoGD12 in transitional cell carcinoma of the bladder. Br J Cancer 2012; 106:1187-95. [PMID: 22353809 PMCID: PMC3304420 DOI: 10.1038/bjc.2012.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: The aim of this current study was to assess the expression and activity of Src family kinases, focal adhesion kinase (FAK), caveolin (Cav-1) and RhoGD12 in bladder cancer. Methods: Fifty-eight patients with a new diagnosis of bladder cancer undergoing transurethral resection were included. Immunohistochemical staining was utilised to assess expression of c-Src, dephosphorylated (SrcY530), phosphorylated Src (Y419), phosphorylated FAK (FAK Y861), Cav-1 and RhoGD12. Expression was assessed using the weighted histoscore method. Results: High expression of dephosphorylated Y527, phosphorylated Y416 and phosphorylated FAK Y861 in the membrane were associated with increased cancer-specific survival (P=0. 01, P=0.001, P=0.008, respectively) and expression of Y416 in the membrane was an independent factor on multivariate analysis when combined with known clinical parameters (P=0.008, HR 0.288, 95% CI 0.11–0.72). Conclusion: These results demonstrate that in contrast to other solid tumours, activation of the Src family members and downstream signalling proteins are associated with a good prognosis in transitional cell carcinoma of the bladder, and activated Src has a positive relationship with RhoGD12.
Collapse
Affiliation(s)
- T Qayyum
- Institute of Cancer, College of MVLS, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
ZHANG LINGYUN, TENG YUEE, ZHANG YE, LIU JING, XU LING, QU JINGLEI, HOU KEZUO, YANG XIANGHONG, LIU YUNPENG, QU XIUJUAN. c-Src expression is predictive of poor prognosis in breast cancer patients with bone metastasis, but not in patients with visceral metastasis. APMIS 2012; 120:549-57. [DOI: 10.1111/j.1600-0463.2011.02864.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Elsberger B, Paravasthu DM, Tovey SM, Edwards J. Shorter disease-specific survival of ER-positive breast cancer patients with high cytoplasmic Src kinase expression after tamoxifen treatment. J Cancer Res Clin Oncol 2011; 138:327-32. [PMID: 22134837 DOI: 10.1007/s00432-011-1096-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/07/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Src kinase, a non-receptor tyrosine kinase, is overexpressed and highly activated in a number of human cancers and appears to show a significant relationship with breast cancer progression. Recent in vitro studies have suggested that Src kinase may be involved in tamoxifen resistance. METHODS Immunohistochemistry was performed on 392 resected breast cancers using an antibody to c-Src. Expression was assessed using the weighted histoscore method. RESULTS Forty-five percentage of breast tumours exhibited nuclear, 46% cytoplasmic and 7% membrane expression. Lymph node positivity correlated with cytoplasmic c-Src tumour expression levels (P < 0.001). Nuclear c-Src correlated negatively with cytoplasmic and membrane c-Src expression (P < 0.001, P = 0.005). High expression levels of cytoplasmic c-Src was associated with worse disease-specific survival (P = 0.026) after completing 5 years of tamoxifen therapy. However, high expression of c-Src at any cellular location did not show any association with de novo relapse on tamoxifen (c-Src nuc P = 0.906, c-Src cyto P = 0.735 and c-Src memb P = 0.791). CONCLUSIONS No translational evidence was found in this study to support a role for Src kinase in developing de novo tamoxifen resistance. However, based on our findings on late clinical outcome, patients with high cytoplasmic c-Src may be selected for continuing endocrine therapy to prevent worsening prognosis.
Collapse
Affiliation(s)
- B Elsberger
- Institute of Cancer, College of Medical, Veterinary and Life Sciences, University of Glasgow, Western Infirmary, McGregor Building, Dumbarton Road, Glasgow, G11 6NT, UK
| | | | | | | |
Collapse
|
32
|
Finn RS, Bengala C, Ibrahim N, Roché H, Sparano J, Strauss LC, Fairchild J, Sy O, Goldstein LJ. Dasatinib as a Single Agent in Triple-Negative Breast Cancer: Results of an Open-Label Phase 2 Study. Clin Cancer Res 2011; 17:6905-13. [DOI: 10.1158/1078-0432.ccr-11-0288] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Tryfonopoulos D, Walsh S, Collins D, Flanagan L, Quinn C, Corkery B, McDermott E, Evoy D, Pierce A, O’Donovan N, Crown J, Duffy M. Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol 2011; 22:2234-40. [DOI: 10.1093/annonc/mdq757] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
34
|
Mayer EL, Baurain JF, Sparano J, Strauss L, Campone M, Fumoleau P, Rugo H, Awada A, Sy O, Llombart-Cussac A. A phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin Cancer Res 2011; 17:6897-904. [PMID: 21903773 DOI: 10.1158/1078-0432.ccr-11-0070] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE SRC-family kinases (SFK) are involved in numerous oncogenic signaling pathways. A phase 2 trial of dasatinib, a potent oral tyrosine kinase inhibitor of SFKs, was carried out in patients with human epidermal growth factor receptor 2-positive (HER2+) and/or hormone receptor-positive (HR+) advanced breast cancer. EXPERIMENTAL DESIGN Patients with measurable tumors and progression after chemotherapy and HER2 and/or HR-targeted agents in adjuvant or metastatic settings (maximum of two prior metastatic setting regimens) received twice daily dasatinib. Primary endpoint was Response Evaluation Criteria in Solid Tumors-defined response rate. Secondary endpoints included toxicity and limited pharmacokinetics. RESULTS Seventy patients (55 years median age) were treated, 83% of HER2+ patients had received prior HER2-directed therapy, and 61% of HR+ patients had received prior endocrine therapy in the advanced setting. Dasatinib starting dose was reduced from 100 to 70 mg twice daily to limit toxicity. Median therapy duration was 1.8 months in both dose groups and most discontinuations were due to progression. Of 69 evaluable patients, three had confirmed partial responses and six had stable disease for 16 weeks or more (disease control rate = 13.0%); all nine of these tumors were HR+ (two were also HER2+). The most common drug-related toxicities were gastrointestinal complaints, headache, asthenia, and pleural effusion. Grade 3-4 toxicity occurred in 37% of patients and was comparable between doses; drug-related serious adverse events were less frequent with 70 mg twice daily than 100 mg twice daily. CONCLUSION Limited single-agent activity was observed with dasatinib in patients with advanced HR+ breast cancer.
Collapse
Affiliation(s)
- Erica L Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hiscox S, Nicholson RI. Src kinase: a therapeutic opportunity in endocrine-responsive and resistant breast cancer. Expert Rev Endocrinol Metab 2011; 6:423-435. [PMID: 30754115 DOI: 10.1586/eem.11.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular kinase, Src, interacts with a diverse array of signaling elements, including the estrogen receptor to regulate breast cancer progression. Recent evidence has also implicated Src in mediating the response of breast cancer to endocrine agents and in the acquisition of antihormone resistance, a significant limiting factor to the clinical effectiveness of systemic endocrine therapy. A number of pharmacological inhibitors of Src kinase have been developed that are effective at suppressing breast cancer growth and invasion in vitro and inhibiting disease spread in vivo. Significantly, there appears to be added benefit when these agents are given in combination with anti-estrogens in endocrine-sensitive and -resistant models. These new findings suggest that Src inhibitors might have therapeutic value in breast cancer patients to improve endocrine response and circumvent resistance.
Collapse
Affiliation(s)
- Stephen Hiscox
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
- b
| | - Robert I Nicholson
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
36
|
KX-01, a novel Src kinase inhibitor directed toward the peptide substrate site, synergizes with tamoxifen in estrogen receptor α positive breast cancer. Breast Cancer Res Treat 2011; 132:391-409. [PMID: 21509526 DOI: 10.1007/s10549-011-1513-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
KX-01 is the first clinical Src inhibitor of the novel peptidomimetic class that targets the peptide substrate site of Src providing more specificity toward Src kinase. The present study was designed to evaluate the effects of KX-01 as a single agent and in combination with tamoxifen (TAM) on cell growth and apoptosis of ERα positive breast cancer in vitro and in vivo. Flow cytometry demonstrated that KX-01 induced cell cycle arrest in G2/M phase. Immunofluorescent staining for mitotic phase markers and TUNEL staining indicated that cells had arrested in the mitotic phase and mitotic arrested cells were undergoing apoptosis. KX-01 induced nuclear accumulation of cyclin B1, and activation of CDK1, MPM2, and Cdc25C that is required for progression past the G2/M checkpoint. Apoptosis resulted from activation of caspases 6, 7, 8, and 9. Combinational index analysis revealed that combinations of KX-01 with TAM resulted in synergistic growth inhibition of breast cancer cell lines. KX-01 combined with TAM resulted in decreased ERα phosphorylation at Src-regulated phosphorylation sites serines 118 and 167 that were associated with reduced ERα transcriptional activity. Orally administered KX-01 resulted in a dose dependent growth inhibition of MCF-7 tumor xenografts, and in combination with TAM exhibited synergistic growth inhibition. Immunohistochemical analysis revealed that combinational treatment reduced angiogenesis, and ERα signaling in tumors compared to either drug alone that may underlie the synergistic tumor growth inhibition. Combinations of KX-01 with endocrine therapy present a promising new strategy for clinical management of ERα positive breast cancer.
Collapse
|
37
|
Elsberger B, Lankston L, McMillan DC, Underwood MA, Edwards J. Presence of tumoural C-reactive protein correlates with progressive prostate cancer. Prostate Cancer Prostatic Dis 2011; 14:122-8. [PMID: 21358753 DOI: 10.1038/pcan.2011.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
C-reactive protein (CRP) is an acute phase protein implicated in the progression of cancer. A positive correlation between tumour stage and plasma CRP levels was demonstrated in prostate cancer, indicating a relationship between raised CRP levels and more aggressive disease, suggesting a role for inflammatory response in tumour progression. Aim of this study was to assess the tumoural presence and cellular location of CRP and establish if these are linked to clinicopathological features of the cohort and patient survival. Tissue microarray technology was employed to analyse 50 matched pairs of hormone sensitive and refractory prostate cancers. Immunohistochemistry was performed using antibody to CRP. CRP was assessed using the weighted histoscore method. CRP presence was observed in the cytoplasm and nucleus of selected tumours. Cytoplasmic CRP correlated positively with metastases at diagnosis (P=0.039), whereas nuclear CRP presence correlated with metastases at relapse (P=0.006). A trend towards an increase in cytoplasmic and nuclear CRP presence from hormone sensitive to hormone refractory tumours was noticed. No significant association between tumoural CRP presence, time to biochemical relapse or disease-specific survival was observed. Tumoural CRP is likely to have a role in progression of prostate cancer, as it is associated with increased presence of metastases at the time of diagnosis and time of relapse. A larger powered study is necessary to establish if CRP presence is associated with disease-specific survival.
Collapse
Affiliation(s)
- B Elsberger
- Department of Pathology, Western Infirmary, McGregor Building, Institute of Cancer, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
38
|
Is there an association with phosphorylation and dephosphorylation of Src kinase at tyrosine 530 and breast cancer patient disease-specific survival. Br J Cancer 2010; 103:1831-4. [PMID: 21063412 PMCID: PMC3008598 DOI: 10.1038/sj.bjc.6605913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND recent work has demonstrated that c-Src and fully activated Y419Src expression was associated with poor clinical outcome of breast cancer patients. It is unknown whether different activation stages of c-Src equally influence disease-specific survival of breast cancer patients. METHODS immunohistochemistry was performed on 165 resected breast cancers using antibodies to phosphorylated and dephosphorylated Src kinase tyrosine site 530. Expression was assessed using the weighted histoscore method. RESULTS majority of phosphorylated and dephosphorylated Y530Src expression was observed in the nucleus and cytoplasm. Only 3.6% of phosphorylated Y530Src (pY530Src) expression was detected in the membrane, compared with 53% with dephosphorylated Y530Src. Nuclear expression of pY530Src correlated negatively with oestrogen receptor (ER) status (χ(2) P<0.001), whereas cytoplasmic phosphorylated and dephosphorylated Y530Src expression correlated negatively with membrane c-Src expression (χ(2) P=0.008, χ(2) P<0.001). On univariate and multivariate analysis, no significant association was noticed between phosphorylated or dephosphorylated Y530Src expression and disease-specific survival at any cellular location. CONCLUSION ER-negative breast cancer patients were more likely to express pY530Src in the nucleus. Breast cancer patients with higher cytoplasmic expression of phosphorylated or dephosphorylated Y530Src were more likely not to express c-Src at the membrane. Phosphorylated and dephosphorylated Y530Src expression is not associated with survival of patients.
Collapse
|
39
|
Breast cancer patients' clinical outcome measures are associated with Src kinase family member expression. Br J Cancer 2010; 103:899-909. [PMID: 20717116 PMCID: PMC2966624 DOI: 10.1038/sj.bjc.6605829] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: This study determined mRNA expression levels for Src kinase family (SFK) members in breast tissue specimens and assessed protein expression levels of prominent SFK members in invasive breast cancer to establish associations with clinical outcome. Ki67 was investigated to determine association between SFK members and proliferation. Methods: The mRNA expression levels were assessed for eight SFK members by quantitative real-time PCR. Immunohistochemistry was performed for c-Src, Lyn, Lck and Ki67. Results: mRNA expression was quantified in all tissue samples. SRC and LYN were the most highly expressed in malignant tissue. LCK was more highly expressed in oestrogen receptor (ER)-negative, compared with ER-positive tumours. High cytoplasmic Src kinase protein expression was significantly associated with decreased disease-specific survival. Lyn was not associated with survival at any cellular location. High membrane Lck expression was significantly associated with improved survival. Ki67 expression correlated with tumour grade and nuclear c-Src, but was not associated with survival. Conclusions: All eight SFK members were expressed in different breast tissues. Src kinase was highest expressed in breast cancer and had a negative impact on disease-specific survival. Membrane expression of Lck was associated with improved clinical outcome. High expression of Src kinase correlated with high proliferation.
Collapse
|
40
|
Edwards J. Src kinase inhibitors: an emerging therapeutic treatment option for prostate cancer. Expert Opin Investig Drugs 2010; 19:605-14. [PMID: 20367532 DOI: 10.1517/13543781003789388] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Once prostate cancer becomes castration-resistant, bone metastases are a significant problem and treatment options are limited. As a result, there is a need for more effective therapies that have antitumor and anti-bone metastatic effects. Because Src and Src-family kinases (SFKs) are involved in multiple signaling pathways central to prostate cancer development, progression, and metastasis, in addition to normal and pathologic osteoclast activities, Src inhibition represents a valid therapeutic strategy for investigation. AREAS COVERED IN THIS REVIEW Here, current treatment options for advanced prostate cancer, the preclinical rationale behind using Src inhibitors, emerging data from clinical trials of Src inhibitors in prostate cancer, and future therapeutic directions are described. Data published in peer-reviewed journals within the last 20 years or presented at recent European or American Society of Clinical Oncology conferences have been reviewed. WHAT THE READER WILL GAIN Readers will gain an insight into the development of therapeutic Src inhibitors, including dasatinib and saracatinib; an understanding of their effects on prostate cancer cells and the bone microenvironment; and emerging clinical data. TAKE HOME MESSAGE Src is implicated in prostate cancer progression and metastasis, therefore treatment with Src inhibitors warrants further investigation.
Collapse
Affiliation(s)
- Joanne Edwards
- University of Glasgow, Glasgow Western Infirmary, Division of Cancer Sciences and Molecular Pathology, Faculty of Medicine, Glasgow, UK.
| |
Collapse
|