1
|
Wang J, Zhang B, Chen X, Xin Y, Li K, Zhang C, Tang K, Tan Y. Cell mechanics regulate the migration and invasion of hepatocellular carcinoma cells via JNK signaling. Acta Biomater 2024; 176:321-333. [PMID: 38272199 DOI: 10.1016/j.actbio.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Hepatocellular carcinoma (HCC) cells, especially those with metastatic competence, show reduced stiffness compared to the non-malignant counterparts. However, it is still unclear whether and how the mechanics of HCC cells influence their migration and invasion. This study reports that HCC cells with enhanced motility show reduced mechanical stiffness and cytoskeleton, suggesting the inverse correlation between cellular stiffness and motility. Through pharmacologic and genetic approaches, inhibiting actomyosin activity reduces HCC cellular stiffness but promotes their migration and invasion, while activating it increases cell stiffness but impairs cell motility. Actomyosin regulates cell motility through the influence on cellular stiffness. Mechanistically, weakening/strengthening cells inhibits/promotes c-Jun N terminal kinase (JNK) phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion. Further, HCC cancer stem cells (CSCs) exhibit higher motility but lower stiffness than control cells. Increasing CSC stiffness weakens migration and invasion through the activation of JNK signaling. In conclusion, our findings unveil a new regulatory role of actomyosin-mediated cellular mechanics in tumor cell motility and present new evidence to support that tumor cell softening may be one driving force for HCC metastasis. STATEMENT OF SIGNIFICANCE: Tumor cells progressively become softened during metastasis and low cell stiffness is associated with high metastatic potential. However, it remains unclear whether tumor cell softening is a by-product of or a driving force for tumor progression. This work reports that the stiffness of hepatocellular carcinoma cells is linked to their migration and invasion. Importantly, tumor cell softening promotes migration and invasion, while cell stiffening impairs the mobility. Weakening/strengthening cells inhibits/promotes JNK phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion ability. Further, stiffening liver cancer stem cells attenuates their motility through activating JNK signaling. In summary, our study uncovers a previously unappreciated role of tumor cell mechanics in migration and invasion and implicates the therapeutic potential of cell mechanics in the mechanotargeting of metastasis.
Collapse
Affiliation(s)
- Junfan Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
2
|
Isert L, Mehta A, Loiudice G, Oliva A, Roidl A, Merkel OM. An In Vitro Approach to Model EMT in Breast Cancer. Int J Mol Sci 2023; 24:ijms24097757. [PMID: 37175467 PMCID: PMC10177865 DOI: 10.3390/ijms24097757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
During the progression from ductal carcinoma in situ (DCIS) to invasive breast cancer (IBC), cells must overcome the physically restraining basement membrane (BM), which compartmentalizes the epithelium from the stroma. Since the extracellular matrix (ECM) of the epithelial and stromal compartments are biochemically and physically distinct from one another, the progression demands a certain degree of cellular plasticity for a primary tumor to become invasive. The epithelial-to-mesenchymal transition (EMT) depicts such a cell program, equipping cancer cells with features allowing for dissemination from the epithelial entity and stromal invasion at the single-cell level. Here, the reciprocal interference between an altering tumor microenvironment and the EMT phenotype was investigated in vitro. BM-typical collagen IV and stroma-typical collagen I coatings were applied as provisional 2D matrices. Pro-inflammatory growth factors were introduced to improve tissue mimicry. Whereas the growth on coated surfaces only slightly affected the EMT phenotype, the combinatorial action of collagen with growth factor TGF-β1 induced prominent phenotypic changes. However, EMT induction was independent of collagen type, and cellular accessibility for EMT-like changes was strongly cell-line dependent. Summarizing the entire body of data, an EMT-phenotyping model was used to determine cellular EMT status and estimate EMT-like changes. The miR200c-mediated reversion of mesenchymal MDA-MB-231 cells is reflected by our EMT-phenotype model, thus emphasizing its potential to predict the therapeutic efficacy of EMT-targeting drugs in the future.
Collapse
Affiliation(s)
- Lorenz Isert
- Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Aditi Mehta
- Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Gabriele Loiudice
- Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Altea Oliva
- Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia M Merkel
- Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
3
|
Petrini I, Sollini M, Bartoli F, Barachini S, Montali M, Pardini E, Burzi IS, Erba PA. ED-B-Containing Isoform of Fibronectin in Tumor Microenvironment of Thymomas: A Target for a Theragnostic Approach. Cancers (Basel) 2022; 14:cancers14112592. [PMID: 35681572 PMCID: PMC9179240 DOI: 10.3390/cancers14112592] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The extra-domain B fibronectin (ED-B FN) is highly expressed in thymic epithelial tumors (TETs), as demonstrated by in vivo targeting using 131I-labeled L19 small immunoprotein (131I-L19-SIP) and immunohistochemistry with a predominant expression by stromal cells of a thymoma microenvironment rather than epithelial cells. Such high expression derived from the induction of stromal cells shifts FN production to the ED-B subtype. Our results suggest that Radretumab radioimmunotherapy (R-RIT) inefficacy is not related to low TET ED-B expression but to multifactorial aspects including patients’ inherent characteristics, the pattern expression of the target, the biological characteristics of the tumor, and the format of the target agent, which contribute to the resistance of tumor cells to treatment. Abstract Aim: to exploit tissue-specific interactions among thymic epithelial tumor (TETs) cells and extra-domain B fibronectin (ED-B FN). Material and methods: The stromal pattern of ED-B FN expression was investigated through tumor specimen collection and molecular profiling in 11 patients with recurrent TETs enrolled in prospective theragnostic phase I/II trials with Radretumab, an ED-B FN specific recombinant human antibody. Radretumab radioimmunotherapy (R-RIT) was offered to patients who exhibited the target expression. Experiments included immunochemical analysis (ICH), cell cultures, immunophenotypic analysis, Western blot, slot-blot assay, and quantitative RT-PCR of two primary thymoma cultures we obtained from patients’ samples and in the Ty82 cell line. Results: The in vivo scintigraphic demonstration of ED-B FN expression resulted in R-RIT eligibility in 8/11 patients, of which seven were treated. The best observed response was disease stabilization (n = 5/7) with a duration of 4.3 months (range 3–5 months). IHC data confirmed high ED-B FN expression in the peripherical microenvironment rather than in the center of the tumor, which was more abundant in B3 thymomas. Further, there was a predominant expression of ED-B FN by the stromal cells of the thymoma microenvironment rather than the epithelial cells. Conclusions: Our data support the hypothesis that thymomas induce stromal cells to shift FN production to the ED-B subtype, likely representing a favorable hallmark for tumor progression and metastasis. Collectively, results derived from clinical experience and molecular insights of the in vitro experiments suggested that R-RIT inefficacy is unlikely related to low target expression in TET, being the mechanism of R-RIT resistance eventually related to patients’ susceptibility (i.e., inherent characteristics), the pattern expression of the target (i.e., at periphery), the biological characteristics of the tumor (i.e., aggressive and resistant phenotypes), and/or to format of the target agent (i.e., 131I-L19-SIP).
Collapse
Affiliation(s)
- Iacopo Petrini
- General Pathology, Department of Translational Research & New Technologies in Surgery and Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy;
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy;
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Francesco Bartoli
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
| | - Serena Barachini
- Laboratory of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.B.); (M.M.); (E.P.); (I.S.B.)
| | - Marina Montali
- Laboratory of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.B.); (M.M.); (E.P.); (I.S.B.)
| | - Eleonora Pardini
- Laboratory of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.B.); (M.M.); (E.P.); (I.S.B.)
| | - Irene Sofia Burzi
- Laboratory of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.B.); (M.M.); (E.P.); (I.S.B.)
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Centre, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: ; Tel.: +39-050-992115
| |
Collapse
|
4
|
Bindhani B, Maity S, Chakrabarti I, Saha SK. Roles of matrix metalloproteinases in development, immunology, and ovulation in fruit Fly (Drosophila). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21849. [PMID: 34779010 DOI: 10.1002/arch.21849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Matrix metalloproteinase (MMP), a protease enzyme, participates in proteolytic cleavage of extracellular matrix proteins from Drosophila and mammals. But, recent studies have revealed other physiologically important roles of MMP in Drosophila. MMP contributes to cardioblast movement and distribution of collagen proteins during cardiogenesis in developing Drosophila. Tissue remodeling, especially tracheal development is also maintained by MMP. MMP regulates certain immunological functions in Drosophila such as wound repairing, plasmatocyte assemblage at the injured site of the basement membrane and glial response to axon degeneration in Drosophila nervous system. But, the contribution of MMP to tumor formation and metastasis in Drosophila has made it an interesting topic among researchers. Ovulation and egg laying are also found to be affected positively by MMP in Drosophila.
Collapse
Affiliation(s)
- Banani Bindhani
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Sulagna Maity
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Ipsit Chakrabarti
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Samir Kumar Saha
- Department of Zoology, West Bengal State University, Barasat, Kolkata, West Bengal, India
| |
Collapse
|
5
|
A Matrix Metalloproteinase Mediates Tracheal Development in Bombyx mori. Int J Mol Sci 2021; 22:ijms22115618. [PMID: 34070691 PMCID: PMC8198827 DOI: 10.3390/ijms22115618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The trachea of insects is a tubular epithelia tissue that transports oxygen and other gases. It serves as a useful model for the studying of the cellular and molecular events involved in epithelial tube formation. Almost all of the extracellular matrix can be degraded by Matrix metalloproteinases (MMPs), which is closely related to the processes of development and regeneration. The regulation of trachea by MMPs is roughly known in previous studies, but the detailed regulation mechanism and involved gene function are not fully explored. In this article, we found MMP1 expressed highly during tracheal remodeling, and knocked out it makes the tracheal branch number reduced in Bombyx mori. In trachea of transgenic BmMMP1-KO silkworm, the space expanding of taenidium and epidermal cells and the structure of apical membrane were abnormal. To explore the underlying mechanism, we detected that DE-cadherin and Integrin β1 were accumulated in trachea of transgenic BmMMP1-KO silkworm by immunohistochemistry. Moreover, 5-Bromo-2′-Deoxyuridine (BrdU) labeling showed that knockout of BmMMP1 in silkworm inhibited tracheal cell proliferation, and BmMMP1 also regulated the proliferation and migration of BmNS cells. All of the results demonstrated that BmMMP1 regulates the development of the tracheal tissue by expanding the space of tracheal cuticles and increases the number of tracheal branches by degrading DE-cadherin and Integrin β1.
Collapse
|
6
|
Diwanji N, Bergmann A. Basement membrane damage by ROS- and JNK-mediated Mmp2 activation drives macrophage recruitment to overgrown tissue. Nat Commun 2020; 11:3631. [PMID: 32686670 PMCID: PMC7371875 DOI: 10.1038/s41467-020-17399-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/25/2020] [Indexed: 01/25/2023] Open
Abstract
Macrophages are a major immune cell type infiltrating tumors and promoting tumor growth and metastasis. To elucidate the mechanism of macrophage recruitment, we utilize an overgrowth tumor model ("undead" model) in larval Drosophila imaginal discs that are attached by numerous macrophages. Here we report that changes to the microenvironment of the overgrown tissue are important for recruiting macrophages. First, we describe a correlation between generation of reactive oxygen species (ROS) and damage of the basement membrane (BM) in all neoplastic, but not hyperplastic, models examined. ROS and the stress kinase JNK mediate the accumulation of matrix metalloproteinase 2 (Mmp2), damaging the BM, which recruits macrophages to the tissue. We propose a model where macrophage recruitment to and activation at overgrowing tissue is a multi-step process requiring ROS- and JNK-mediated Mmp2 upregulation and BM damage. These findings have implications for understanding the role of the tumor microenvironment for macrophage activation.
Collapse
Affiliation(s)
- Neha Diwanji
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, LRB 419, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, LRB 419, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Nii T, Kuwahara T, Makino K, Tabata Y. A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration. Tissue Eng Part A 2020; 26:1272-1282. [PMID: 32434426 DOI: 10.1089/ten.tea.2020.0095] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The objective of this study is to design a cancer invasion model by making use of cancer-associated fibroblasts (CAF) or tumor-associated macrophages (TAM) and gelatin hydrogel microspheres (GM) for the sustained release of drugs. The GM containing adenosine (A) (GM-A) were prepared and cultured with TAM to obtain three-dimensional (3D) TAM aggregates incorporating GM-A (3D TAM-GM-A). The GM-A incorporation enabled TAM to enhance the secretion level of vascular endothelial growth factor. When co-cultured with HepG2 liver cancer cells in an invasion assay, the 3D TAM-GM-A promoted the invasion rate of cancer cells. In addition, the E-cadherin expression level decreased to a significantly greater extent compared with that co-cultured with TAM aggregates incorporating GM, whereas the significantly higher expression of N-cadherin and Vimentin was observed. This indicates that the epithelial-mesenchymal transition event was induced. The GM containing transforming growth factor-β1 (TGF-β1) were prepared to incorporate into 3D CAF (3D CAF-GM-TGF-β1). Following a co-culture of mixed 3D CAF-GM-TGF-β1 and 3D TAM-GM-A and every HepG2, MCF-7 breast cancer cell, or WA-hT lung cancer cell, the invasion rate of every cancer cell enhanced depending on the mixing ratio of 3D TAM-GM-A and 3D CAF-GM-TGF-β1. The amount of matrix metalloproteinase-2 (MMP-2) secreted also enhanced, and the enhancement was well corresponded with that of cancer cell invasion rate. The higher MMP secretion assists the breakdown of basement membrane, leading to the higher rate of cancer cell invasion. This model is a promising 3D culture system to evaluate the invasion ability of various cancer cells in vitro. Impact statement This study proposes a cell culture system to enhance the tumor-associated macrophage function based on the combination of three-dimensional (3D) cell aggregates and gelatin hydrogel microspheres (GM) for adenosine delivery. An additional combination of 3D cancer-associated fibroblasts incorporating GM containing transforming growth factor-β1 allowed cancer cells to enhance their invasion rate. This co-culture system is promising to evaluate the ability of cancer cell invasion for anticancer drug screening.
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Ma Z, Li P, Hu X, Song H. Polarity protein Canoe mediates overproliferation via modulation of JNK, Ras-MAPK and Hippo signalling. Cell Prolif 2018; 52:e12529. [PMID: 30328653 PMCID: PMC6430484 DOI: 10.1111/cpr.12529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives Over the past decade an intriguing connection between cell polarity and tumorigenesis has emerged. Multiple core components of the junction complexes that help to form and maintain cell polarity display both pro‐ and anti‐tumorigenic functions in a context‐dependent manner, with the underlying mechanisms poorly understood. Materials and Methods With transgenic fly lines that overexpress or knock down specific signalling components, we perform genetic analysis to investigate the precise role of the polarity protein Canoe (Cno) in tumorigenesis and the downstream pathways. Results We show that overexpression of cno simultaneously activates JNK and Ras‐MEK‐ERK signalling, resulting in mixed phenotypes of both overproliferation and cell death in the Drosophila wing disc. Moderate alleviation of JNK activation eliminates the effect of Cno on cell death, leading to organ overgrowth and cell migration that mimic the formation and invasion of tumours. In addition, we find that the Hippo pathway acts downstream of JNK and Ras signalling to mediate the effect of Cno on cell proliferation. Conclusions Our work reveals an oncogenic role of Cno and creates a new type of Drosophila tumour model for cancer research.
Collapse
Affiliation(s)
- Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjie Hu
- School of Public Health, Guangzhou Medical University, Guangdong, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Poon CLC, Brumby AM, Richardson HE. Src Cooperates with Oncogenic Ras in Tumourigenesis via the JNK and PI3K Pathways in Drosophila epithelial Tissue. Int J Mol Sci 2018; 19:ijms19061585. [PMID: 29861494 PMCID: PMC6032059 DOI: 10.3390/ijms19061585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
The Ras oncogene (Rat Sarcoma oncogene, a small GTPase) is a key driver of human cancer, however alone it is insufficient to produce malignancy, due to the induction of cell cycle arrest or senescence. In a Drosophila melanogaster genetic screen for genes that cooperate with oncogenic Ras (bearing the RasV12 mutation, or RasACT), we identified the Drosophila Src (Sarcoma virus oncogene) family non-receptor tyrosine protein kinase genes, Src42A and Src64B, as promoting increased hyperplasia in a whole epithelial tissue context in the Drosophila eye. Moreover, overexpression of Src cooperated with RasACT in epithelial cell clones to drive neoplastic tumourigenesis. We found that Src overexpression alone activated the Jun N-terminal Kinase (JNK) signalling pathway to promote actin cytoskeletal and cell polarity defects and drive apoptosis, whereas, in cooperation with RasACT, JNK led to a loss of differentiation and an invasive phenotype. Src + RasACT cooperative tumourigenesis was dependent on JNK as well as Phosphoinositide 3-Kinase (PI3K) signalling, suggesting that targeting these pathways might provide novel therapeutic opportunities in cancers dependent on Src and Ras signalling.
Collapse
Affiliation(s)
- Carole L C Poon
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Anthony M Brumby
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Helena E Richardson
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
10
|
Ohsawa S, Vaughen J, Igaki T. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev Cell 2018; 44:284-296. [PMID: 29408235 DOI: 10.1016/j.devcel.2018.01.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - John Vaughen
- Department of Developmental Biology, Stanford School of Medicine, Beckman Center, 279 Campus Drive B300, Stanford, CA 94305, USA
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Levinson S, Cagan RL. Drosophila Cancer Models Identify Functional Differences between Ret Fusions. Cell Rep 2017; 16:3052-3061. [PMID: 27626672 DOI: 10.1016/j.celrep.2016.08.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 12/23/2022] Open
Abstract
We generated and compared Drosophila models of RET fusions CCDC6-RET and NCOA4-RET. Both RET fusions directed cells to migrate, delaminate, and undergo EMT, and both resulted in lethality when broadly expressed. In all phenotypes examined, NCOA4-RET was more severe than CCDC6-RET, mirroring their effects on patients. A functional screen against the Drosophila kinome and a library of cancer drugs found that CCDC6-RET and NCOA4-RET acted through different signaling networks and displayed distinct drug sensitivities. Combining data from the kinome and drug screens identified the WEE1 inhibitor AZD1775 plus the multi-kinase inhibitor sorafenib as a synergistic drug combination that is specific for NCOA4-RET. Our work emphasizes the importance of identifying and tailoring a patient's treatment to their specific RET fusion isoform and identifies a multi-targeted therapy that may prove effective against tumors containing the NCOA4-RET fusion.
Collapse
Affiliation(s)
- Sarah Levinson
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029-1020, USA
| | - Ross L Cagan
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029-1020, USA.
| |
Collapse
|
12
|
Stewart CJR, Crook ML. Cervical intraepithelial neoplasia (CIN) 3-like squamous cell carcinoma of the cervix: a review of 14 cases with comparison of E-cadherin and cyclin D1 expression in the CIN 3-like and infiltrative tumour elements. Histopathology 2016; 70:367-374. [PMID: 27681166 DOI: 10.1111/his.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
AIMS To review the clinicopathological features of 14 cases of CIN 3-like squamous cell carcinoma (SCC) of the cervix and to investigate possible mechanisms of tumour invasion in the CIN 3-like and 'conventional' (infiltrative) tumour components. METHODS AND RESULTS The median patient age was 43.4 years. Of the 12 cases with known stage, eight were stage IB and four were stage II. Initial biopsies were often misinterpreted as CIN 3 alone or CIN 3 with only superficial stromal invasion, and eight patients underwent multiple biopsy procedures prior to definitive diagnosis: upon review, an earlier diagnosis was possible in six of these cases. Nine tumours exhibited both CIN 3-like and conventional tumour components. The former usually demonstrated an E-cadherin-positive and cyclin D1-negative immunophenotype, whereas conventional SCC more often showed loss of E-cadherin and cyclin D1 staining at the margin of larger tumour nests and in smaller invasive clusters. CONCLUSION Cervical SCCs demonstrating a CIN 3-like growth pattern continue to present diagnostic difficulty and are often misinterpreted as non-invasive/minimally invasive disease. The morphology and immunophenotype suggest a process of collective cellular invasion in CIN 3-like SCC, whereas corresponding conventional SCC elements show features consistent with epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Colin J R Stewart
- Department of Pathology, King Edward Memorial Hospital, Perth, Western Australia, Australia.,School of Womens' and Infant's Health, University of Western Australia, Perth, Western Australia, Australia
| | - Maxine L Crook
- Department of Pathology, King Edward Memorial Hospital, Perth, Western Australia, Australia
| |
Collapse
|
13
|
An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model. Curr Biol 2016; 26:2101-13. [DOI: 10.1016/j.cub.2016.06.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/21/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
|
14
|
Yasin HWR, van Rensburg SH, Feiler CE, Johnson RI. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity. Dev Biol 2016; 410:135-149. [PMID: 26772997 DOI: 10.1016/j.ydbio.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.
Collapse
Affiliation(s)
- Hannah W R Yasin
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | | | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
15
|
Shen J, Lu J, Sui L, Wang D, Yin M, Hoffmann I, Legler A, Pflugfelder GO. The orthologous Tbx transcription factors Omb and TBX2 induce epithelial cell migration and extrusion in vivo without involvement of matrix metalloproteinases. Oncotarget 2015; 5:11998-2015. [PMID: 25344916 PMCID: PMC4322970 DOI: 10.18632/oncotarget.2426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/02/2014] [Indexed: 01/06/2023] Open
Abstract
The transcription factors TBX2 and TBX3 are overexpressed in various human cancers. Here, we investigated the effect of overexpressing the orthologous Tbx genes Drosophila optomotor-blind (omb) and human TBX2 in the epithelium of the Drosophila wing imaginal disc and observed two types of cell motility. Omb/TBX2 overexpressing cells could move within the plane of the epithelium. Invasive cells migrated long-distance as single cells retaining or regaining normal cell shape and apico-basal polarity in spite of attenuated apical DE-cadherin concentration. Inappropriate levels of DE-cadherin were sufficient to drive cell migration in the wing disc epithelium. Omb/TBX2 overexpression and reduced DE-cadherin-dependent adhesion caused the formation of actin-rich lateral cell protrusions. Omb/TBX2 overexpressing cells could also delaminate basally, penetratingthe basal lamina, however, without degradation of extracellular matrix. Expression of Timp, an inhibitor of matrix metalloproteases, blocked neither intraepithelial motility nor basal extrusion. Our results reveal an MMP-independent mechanism of cell invasion and suggest a conserved role of Tbx2-related proteins in cell invasion and metastasis-related processes.
Collapse
Affiliation(s)
- Jie Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Juan Lu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Liyuan Sui
- Department of Entomology, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Meizhen Yin
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Inka Hoffmann
- Institute of Genetics, Johannes Gutenberg-University, Mainz, Germany
| | - Anne Legler
- Institute of Genetics, Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
16
|
Dong Q, Brenneman B, Fields C, Srivastava A. A Cathepsin-L is required for invasive behavior during Air Sac Primordium development in Drosophila melanogaster. FEBS Lett 2015; 589:3090-7. [PMID: 26341534 DOI: 10.1016/j.febslet.2015.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/16/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
The Drosophila Air Sac Primordium (ASP) has emerged as an important structure where cellular, genetic and molecular events responsible for invasive behavior and branching morphogenesis can be studied. In this report we present data which demonstrate that a Cathepsin-L encoded by the gene CP1 in Drosophila is necessary for invasive behavior during ASP development. We find that CP1 is expressed in ASP and knockdown of CP1 results in suppression of migratory and invasive behavior observed during ASP development. We further show that CP1 possibly regulates invasive behavior by promoting degradation of Basement Membrane. Our data provide clues to the possible role of Cathepsin L in human lung development and tumor invasion, especially, given the similarities between human lung and Drosophila ASP development.
Collapse
Affiliation(s)
- Qian Dong
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA
| | - Breanna Brenneman
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA
| | - Christopher Fields
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA.
| |
Collapse
|
17
|
Brock A, Krause S, Ingber DE. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat Rev Cancer 2015; 15:499-509. [PMID: 26156637 DOI: 10.1038/nrc3959] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Differentiation therapies that induce malignant cells to stop growing and revert to normal tissue-specific differentiated cell types are successful in the treatment of a few specific haematological tumours. However, this approach has not been widely applied to solid tumours because their developmental origins are less well understood. Recent advances suggest that understanding tumour cell plasticity and how intrinsic factors (such as genetic noise and microenvironmental signals, including physical cues from the extracellular matrix) govern cell state switches will help in the development of clinically relevant differentiation therapies for solid cancers.
Collapse
Affiliation(s)
- Amy Brock
- 1] Department of Biomedical Engineering, Institute for Cell and Molecular Biology, The University of Texas, Austin, Texas 78712, USA. [2]
| | - Silva Krause
- 1] Momenta Pharmaceuticals, Cambridge, Massachusetts 02142, USA. [2]
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, CLSB 5, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Turkel N, Portela M, Poon C, Li J, Brumby AM, Richardson HE. Cooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in Drosophila epithelial tumorigenesis. Biol Open 2015; 4:1024-39. [PMID: 26187947 PMCID: PMC4542289 DOI: 10.1242/bio.012815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cell polarity regulator Scribble (Scrib) and overexpression of the BTB-ZF protein Abrupt (Ab). Herein, we show that co-expression of ab with actin cytoskeletal regulators, RhoGEF2 or Src64B, in the developing eye-antennal epithelial tissue results in the formation of overgrown amorphous tumours, whereas ab and DRac1 co-expression leads to non-cell autonomous overgrowth. Together with ab, these genes affect the expression of differentiation genes, resulting in tumours locked in a progenitor cell fate. Finally, we show that the expression of two mammalian genes related to ab, Bcl6 and ZBTB7A, which are oncogenes in mammalian epithelial cancers, significantly correlate with the upregulation of cytoskeletal genes or downregulation of apico-basal cell polarity neoplastic tumour suppressor genes in colorectal, lung and other human epithelial cancers. Altogether, this analysis has revealed that upregulation of cytoskeletal regulators cooperate with Abrupt in Drosophila epithelial tumorigenesis, and that high expression of human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant correlations with cytoskeletal and cell polarity gene expression in specific epithelial tumour types. This highlights the need for further investigation of the cooperation between these genes in mammalian systems.
Collapse
Affiliation(s)
- Nezaket Turkel
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Marta Portela
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Carole Poon
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Jason Li
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Anthony M Brumby
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Helena E Richardson
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia School of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
19
|
Abstract
Epithelia form intelligent, dynamic barriers between the external environment and an organism's interior. Intercellular cadherin-based adhesions adapt and respond to mechanical forces and cell density, while tight junctions flexibly control diffusion both within the plasma membrane and between adjacent cells. Epithelial integrity and homeostasis are of central importance to survival, and mechanisms have evolved to ensure these processes are maintained during growth and in response to damage. For instance, cell competition surveys the fitness of cells within epithelia and removes the less fit; extrusion or delamination can remove apoptotic or defective cells from the epithelial sheet and can restore homeostasis when an epithelial layer becomes too crowded; spindle orientation ensures two-dimensional growth in simple epithelia and controls stratification in complex epithelia; and transition to a mesenchymal phenotype enables active escape from an epithelial layer. This review will discuss these various mechanisms and consider how they are subverted in disease.
Collapse
Affiliation(s)
- Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Richard Guyer
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Graham Richardson
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yongliang Huo
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Syed M Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Deady LD, Shen W, Mosure SA, Spradling AC, Sun J. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila. PLoS Genet 2015; 11:e1004989. [PMID: 25695427 PMCID: PMC4335033 DOI: 10.1371/journal.pgen.1004989] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023] Open
Abstract
Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells (“trimming”) and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a “corpus luteum (CL)” at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2), a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals. Sexual reproduction is thought to be a highly divergent process due to fast evolution and speciation. For example, sperm from one species can seldom fertilize eggs from another species, indicating that different molecular machinery for fertilization is applied in different species. In contrast to this divergent view, ovulation, the process of liberating mature eggs from the ovary, is a general phenomenon throughout the Metazoa. We provide evidence that basic mechanisms of ovulation are conserved. Like mammalian follicles, Drosophila follicles consist of single oocytes surrounded by a layer of follicle cells. Drosophila follicles degrade their posterior follicle cells to allow the oocyte to rupture into the oviduct during ovulation. The residual postovulatory follicles reside in the ovary, accumulate yellowish pigmentation, and produce the steroid hormone ecdysone, features which resemble the mammalian corpus luteum. We also showed that matrix metalloproteinase, a type of proteinase proposed to degrade the mammalian follicle wall during ovulation, is required in Drosophila for posterior follicle cell degradation and ovulation. These findings are particularly important because this simple genetic model system will speed up the identification of many conserved regulators required for regulating matrix metalloproteinase activity and ovulation in human, processes that influence ovarian cancer formation and cancer metastasis.
Collapse
Affiliation(s)
- Lylah D. Deady
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Wei Shen
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Sarah A. Mosure
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Allan C. Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- * E-mail: (ACS); (JS)
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
- * E-mail: (ACS); (JS)
| |
Collapse
|
21
|
Resolving cancer-stroma interfacial signalling and interventions with micropatterned tumour-stromal assays. Nat Commun 2014; 5:5662. [PMID: 25489927 PMCID: PMC4261930 DOI: 10.1038/ncomms6662] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/24/2014] [Indexed: 01/09/2023] Open
Abstract
Tumor-stromal interactions are a determining factor in cancer progression. In vivo, the interaction interface is associated with spatially-resolved distributions of cancer and stromal phenotypes. Here, we establish a micropatterned tumor-stromal assay (μTSA) with laser capture microdissection to control the location of co-cultured cells and analyze bulk and interfacial tumor-stromal signaling in driving cancer progression. μTSA reveals a spatial distribution of phenotypes in concordance with human estrogen receptor-positive (ER+) breast cancer samples, and heterogeneous drug activity relative to the tumor-stroma interface. Specifically, an unknown mechanism of reversine is shown in targeting tumor-stromal interfacial interactions using ER+ MCF-7 breast cancer and bone marrow-derived stromal cells. Reversine suppresses MCF-7 tumor growth and bone metastasis in vivo by reducing tumor stromalization including collagen deposition and recruitment of activated stromal cells. This study advocates μTSA as a platform for studying tumor microenvironmental interactions and cancer field effects with applications in drug discovery and development.
Collapse
|
22
|
Dutta A, Li J, Lu H, Akech J, Pratap J, Wang T, Zerlanko BJ, FitzGerald TJ, Jiang Z, Birbe R, Wixted J, Violette SM, Stein JL, Stein GS, Lian JB, Languino LR. Integrin αvβ6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Res 2014; 74:1598-608. [PMID: 24385215 DOI: 10.1158/0008-5472.can-13-1796] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular circuitries controlling osseous prostate metastasis are known to depend on the activity of multiple pathways, including integrin signaling. Here, we demonstrate that the αvβ6 integrin is upregulated in human prostate cancer bone metastasis. In prostate cancer cells, this integrin is a functionally active receptor for fibronectin and latency-associated peptide-TGF-β1; it mediates attachment and migration upon ligand binding and is localized in focal contacts. Given the propensity of prostate cancer cells to form bone metastatic lesions, we investigated whether the αvβ6 integrin promotes this type of metastasis. We show for the first time that αvβ6 selectively induces matrix metalloproteinase 2 (MMP2) in vitro in multiple prostate cancer cells and promotes osteolysis in vivo in an immunodeficient mouse model of bone metastasis through upregulation of MMP2, but not MMP9. The effect of αvβ6 on MMP2 expression and activity is independent of androgen receptor in the analyzed prostate cancer cells. Increased levels of parathyroid hormone-related protein (PTHrP), known to induce osteoclastogenesis, were also observed in αvβ6-expressing cells. However, by using MMP2 short hairpin RNA, we demonstrate that the αvβ6 effect on bone loss is due to upregulation of soluble MMP2 by the cancer cells, not due to changes in tumor growth rate. Another related αv-containing integrin, αvβ5, fails to show similar responses, underscoring the significance of αvβ6 activity. Overall, these mechanistic studies establish that expression of a single integrin, αvβ6, contributes to the cancer cell-mediated program of osteolysis by inducing matrix degradation through MMP2. Our results open new prospects for molecular therapy for metastatic bone disease.
Collapse
Affiliation(s)
- Anindita Dutta
- Authors' Affiliations: Prostate Cancer Discovery and Development Program; Departments of Cancer Biology and Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Cell Biology, Radiation Oncology, Pathology, and Orthopedics, University of Massachusetts Medical School, Worcester; Biogen Idec, Inc., Cambridge, Massachusetts; and Department of Biochemistry, The University of Vermont, Burlington, Vermont
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin YN, Izbicki JR, König A, Habermann JK, Blechner C, Lange T, Schumacher U, Windhorst S. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells. Int J Cancer 2013; 134:1571-82. [PMID: 24105619 DOI: 10.1002/ijc.28486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy.
Collapse
Affiliation(s)
- Yuan-Na Lin
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
A Jnk-Rho-Actin remodeling positive feedback network directs Src-driven invasion. Oncogene 2013; 33:2801-6. [PMID: 23831567 DOI: 10.1038/onc.2013.232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 12/24/2022]
Abstract
Current models of tumor cell invasion propose that oncogenic signaling converges upon key orchestrators of cytoskeletal dynamics, including c-Jun N-terminal kinase (Jnk) and RhoGTPase family members; these signals dynamically direct Actin remodeling proteins (ARPs) to catalyze the cytoskeletal changes required for migration. Src is a key driver of tumor aggression, metastasis and patient mortality. To clarify how Src regulates Actin dynamics to promote invasive migration, we performed a genetic modifier screen in a Drosophila model of invasion. Nine genes linked to Actin dynamics were identified that mediate invasion in situ. We found that ARPs were required for many oncogenic effects of Src including Mmp1 expression and initiation of apoptosis. Surprisingly, they were also regulators of Jnk pathway activity: both Src and the small GTPase Rho1 activated Jnk in a manner dependent on ARPs during invasion. Our results suggest that ARPs are not simply downstream executors of signal transduction pathways. Rather, they participate in a positive feedback network involving canonical oncogenic signaling pathways that promote tumor invasion.
Collapse
|
25
|
Petzoldt AG, Gleixner EM, Fumagalli A, Vaccari T, Simons M. Elevated expression of the V-ATPase C subunit triggers JNK-dependent cell invasion and overgrowth in a Drosophila epithelium. Dis Model Mech 2013; 6:689-700. [PMID: 23335205 PMCID: PMC3634652 DOI: 10.1242/dmm.010660] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The C subunit of the vacuolar H+-ATPase or V-ATPase regulates the activity and assembly of the proton pump at cellular membranes. It has been shown to be strongly upregulated in oral squamous cell carcinoma, a highly metastatic epithelial cancer. In addition, increased V-ATPase activity appears to correlate with invasiveness of cancer cells, but the underlying mechanism is largely unknown. Using the Drosophila wing imaginal epithelium as an in vivo model system, we demonstrate that overexpression of Vha44, the Drosophila orthologue of the C subunit, causes a tumor-like tissue transformation in cells of the wing epithelium. Overexpressing cells are excluded from the epithelium and acquire invasive properties while displaying high apoptotic rates. Blocking apoptosis in these cells unmasks a strong proliferation stimulus, leading to overgrowth. Furthermore, we show that excess Vha44 greatly increases acidification of endocytic compartments and interferes with endosomal trafficking. As a result, cargoes such as GFP-Lamp1 and Notch accumulate in highly acidified enlarged endolysosomal compartments. Consistent with previous reports on the endocytic activation of Eiger/JNK signaling, we find that V-ATPase stimulation by Vha44 causes JNK signaling activation whereas downmodulation of JNK signaling rescues the invasive phenotypes. In summary, our in vivo-findings demonstrate that increased levels of V-ATPase C subunit induce a Eiger/JNK-dependent cell transformation within an epithelial organ that recapitulates early carcinoma stages.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Center for Systems Biology (ZBSA), University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Abstract
Cellular communication is at the heart of animal development, and guides the specification of cell fates, the movement of cells within and between tissues, and the coordinated arrangement of different body parts. During organ and tissue growth, cell-cell communication plays a critical role in decisions that determine whether cells survive to contribute to the organism. In this review, we discuss recent insights into cell competition, a social cellular phenomenon that selects the fittest cells in a tissue, and as such potentially contributes to the regulation of its growth and final size. The field of cell competition has seen a huge explosion in its study in the last several years, facilitated by the increasingly sophisticated genetic and molecular technology available in Drosophila and driven by its relevance to stem cell biology and human cancer.
Collapse
Affiliation(s)
- Simon de Beco
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
27
|
Abstract
A key function of signal transduction during cell polarization is the creation of spatially segregated regions of the cell cortex that possess different lipid and protein compositions and have distinct functions. Polarity can be initiated spontaneously or in response to signaling inputs from adjacent cells or soluble factors and is stabilized by positive-feedback loops. A conserved group of proteins, the Par proteins, plays a central role in polarity establishment and maintenance in many contexts. These proteins generate and maintain their distinct locations in cells by actively excluding one another from specific regions of the plasma membrane. The Par signaling pathway intersects with multiple other pathways that control cell growth, death, and organization.
Collapse
Affiliation(s)
- Luke Martin McCaffrey
- Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
28
|
Abstract
Research on solid tumors has had limited emphasis on interactions between transformed cells and their neighbors within the epithelium. Leung and Brugge (2012) use cultured breast cancer acini to demonstrate the importance of local interactions between normal and transformed epithelial cells, with important implications for our understanding of epithelial cancers.
Collapse
Affiliation(s)
- Ross L Cagan
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
29
|
McCaffrey LM, Macara IG. Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol 2011; 21:727-35. [DOI: 10.1016/j.tcb.2011.06.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 12/21/2022]
|
30
|
Miles WO, Dyson NJ, Walker JA. Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech 2011; 4:753-61. [PMID: 21979943 PMCID: PMC3209645 DOI: 10.1242/dmm.006908] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conservation of major signaling pathways between humans and flies has made Drosophila a useful model organism for cancer research. Our understanding of the mechanisms regulating cell growth, differentiation and development has been considerably advanced by studies in Drosophila. Several recent high profile studies have examined the processes constraining the metastatic growth of tumor cells in fruit fly models. Cell invasion can be studied in the context of an in vivo setting in flies, enabling the genetic requirements of the microenvironment of tumor cells undergoing metastasis to be analyzed. This Perspective discusses the strengths and limitations of Drosophila models of cancer invasion and the unique tools that have enabled these studies. It also highlights several recent reports that together make a strong case for Drosophila as a system with the potential for both testing novel concepts in tumor progression and cell invasion, and for uncovering players in metastasis.
Collapse
Affiliation(s)
- Wayne O Miles
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
31
|
Parisi F, Vidal M. Epithelial delamination and migration: lessons from Drosophila. Cell Adh Migr 2011; 5:366-72. [PMID: 21836393 DOI: 10.4161/cam.5.4.17524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the most deadly phase of cancer progression, during which cells detach from their original niche to invade distant tissues, yet the biological processes underlying the spread of cancer are still poorly understood. The fruit fly Drosophila melanogaster provides important insights in our understanding of how epithelial cells migrate from their original location and find their way into surrounding and distant tissues in the metastatic process. Here we review recent studies on the mechanisms of migration of embryonic haemocytes, the macrophage-like immuno-surveillance cells, during normal development and wound healing. We highlight the interesting finding that hydrogen peroxide (H₂O₂) has been identified as the driving force for haemocyte chemotaxis. We also give a special emphasis to studies suggesting the concept that haemocytes, together with the tumor microenvironment, act as potential inducers of the epithelial de-lamination required for tumor invasion. We propose that cell delamination and migration could be uncoupled from loss of cell polarity via a tumor-related inflammatory response.
Collapse
Affiliation(s)
- Federica Parisi
- Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | |
Collapse
|
32
|
Siller SS, Broadie K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis Model Mech 2011; 4:673-85. [PMID: 21669931 PMCID: PMC3180232 DOI: 10.1242/dmm.008045] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fragile X syndrome (FXS), caused by loss of the fragile X mental retardation 1 (FMR1) product (FMRP), is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP) inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1) null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ), clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP) in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single dfmr1 mutants and controls. These results support minocycline as a promising potential FXS treatment and suggest that it might act via MMP inhibition. We conclude that FMRP and TIMP pathways interact in a reciprocal, bidirectional manner.
Collapse
Affiliation(s)
- Saul S Siller
- Department of Biological Sciences and Department of Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
33
|
Epithelial–stromal interactions in salivary glands of rats exposed to chronic passive smoking. Arch Oral Biol 2011; 56:580-7. [DOI: 10.1016/j.archoralbio.2010.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/21/2010] [Accepted: 11/26/2010] [Indexed: 12/22/2022]
|
34
|
Hagedorn EJ, Sherwood DR. Cell invasion through basement membrane: the anchor cell breaches the barrier. Curr Opin Cell Biol 2011; 23:589-96. [PMID: 21632231 DOI: 10.1016/j.ceb.2011.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 11/26/2022]
Abstract
Cell invasion through basement membrane (BM) is a specialized cellular behavior critical to many normal developmental events, immune surveillance, and cancer metastasis. A highly dynamic process, cell invasion involves a complex interplay between cell-intrinsic elements that promote the invasive phenotype, and cell-cell and cell-BM interactions that regulate the timing and targeting of BM transmigration. The intricate nature of these interactions has made it challenging to study cell invasion in vivo and model in vitro. Anchor cell invasion in Caenorhabditis elegans is emerging as an important experimental paradigm for comprehensive analysis of BM invasion, revealing the gene networks that specify invasive behavior and the interactions that occur at the cell-BM interface.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| | | |
Collapse
|
35
|
Polesello C, Roch F, Gobert V, Haenlin M, Waltzer L. Modeling cancers in Drosophila. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:51-82. [PMID: 21377624 DOI: 10.1016/b978-0-12-384878-9.00002-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The basic cellular processes deregulated during carcinogenesis and the vast majority of the genes implicated in cancer appear conserved from humans to flies. This conservation, together with an ever-expanding fly genetic toolbox, has made of Drosophila melanogaster a remarkably profitable model to study many fundamental aspects of carcinogenesis. In particular, Drosophila has played a major role in the identification of genes and pathways implicated in cancer and in disclosing novel functional relationships between cancer genes. It has also proved to be a genetically tractable system where to mimic cancer-like situations and characterize the mode of action of human oncogenes. Here, we outline some advances in the study of cancer, both at the basic and more translational levels, which have benefited from research carried out in flies.
Collapse
Affiliation(s)
- Cédric Polesello
- Université de Toulouse, UPS, CBD, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062, CNRS, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|