1
|
Walser TC, Jing Z, Tran LM, Lin YQ, Yakobian N, Wang G, Krysan K, Zhu LX, Sharma S, Lee MH, Belperio JA, Ooi AT, Gomperts BN, Shay JW, Larsen JE, Minna JD, Hong LS, Fishbein MC, Dubinett SM. Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells. Cancer Res 2018; 78:1986-1999. [PMID: 29431637 DOI: 10.1158/0008-5472.can-17-0315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated, including in non-small cell lung cancer (NSCLC). Here, we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo Snail-mediated transformation relied upon silencing of the tumor-suppressive RNA splicing regulatory protein ESRP1. In clinical specimens of NSCLC, ESRP1 loss was documented in Snail-expressing premalignant pulmonary lesions. Mechanistic investigations showed that Snail drives malignant progression in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing microRNAs are inhibited. Collectively, our results show how ESRP1 loss is a critical event in lung carcinogenesis, and they identify new candidate directions for targeted therapy of NSCLC.Significance: This study defines a Snail-ESRP1 cancer axis that is crucial for human lung carcinogenesis, with implications for new intervention strategies and translational opportunities. Cancer Res; 78(8); 1986-99. ©2018 AACR.
Collapse
Affiliation(s)
- Tonya C Walser
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Zhe Jing
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Linh M Tran
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Ying Q Lin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Natalie Yakobian
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Gerald Wang
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Li X Zhu
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Sherven Sharma
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Mi-Heon Lee
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Aik T Ooi
- Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California.,Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Brigitte N Gomperts
- Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California.,Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jill E Larsen
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Long-Sheng Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California. .,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
2
|
Campbell TM, Castro MA, de Santiago I, Fletcher MN, Halim S, Prathalingam R, Ponder BA, Meyer KB. FGFR2 risk SNPs confer breast cancer risk by augmenting oestrogen responsiveness. Carcinogenesis 2016; 37:741-750. [PMID: 27236187 PMCID: PMC4967216 DOI: 10.1093/carcin/bgw065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/03/2016] [Accepted: 05/21/2016] [Indexed: 12/11/2022] Open
Abstract
The fibroblast growth factor receptor 2 (FGFR2) locus is consistently the top hit in genome-wide association studies for oestrogen receptor-positive (ER(+)) breast cancer. Yet, its mode of action continues to be controversial. Here, we employ a systems biology approach to demonstrate that signalling via FGFR2 counteracts cell activation by oestrogen. In the presence of oestrogen, the oestrogen receptor (ESR1) regulon (set of ESR1 target genes) is in an active state. However, signalling by FGFR2 is able to reverse the activity of the ESR1 regulon. This effect is seen in multiple distinct FGFR2 signalling model systems, across multiple cells lines and is dependent on the presence of FGFR2. Increased oestrogen exposure has long been associated with an increased risk of breast cancer. We therefore hypothesized that risk variants should reduce FGFR2 expression and subsequent signalling. Indeed, transient transfection experiments assaying the three independent variants of the FGFR2 risk locus (rs2981578, rs35054928 and rs45631563) in their normal chromosomal context show that these single-nucleotide polymorphisms (SNPs) map to transcriptional silencer elements and that, compared with wild type, the risk alleles augment silencer activity. The presence of risk variants results in lower FGFR2 expression and increased oestrogen responsiveness. We thus propose a molecular mechanism by which FGFR2 can confer increased breast cancer risk that is consistent with oestrogen exposure as a major driver of breast cancer risk. Our findings may have implications for the clinical use of FGFR2 inhibitors.
Collapse
Affiliation(s)
- Thomas M. Campbell
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, Paraná 81520-260, Brazil
- Present address: Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Present address: Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Present address: Abcam, Cambridge Science Park, Milton, Cambridge CB4 0FL, UK
| | - Mauro A.A. Castro
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, Paraná 81520-260, Brazil
| | - Ines de Santiago
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, Paraná 81520-260, Brazil
- Present address: Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Present address: Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Present address: Abcam, Cambridge Science Park, Milton, Cambridge CB4 0FL, UK
| | - Michael N.C. Fletcher
- Present address: Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Silvia Halim
- Present address: Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | - Bruce A.J. Ponder
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, Paraná 81520-260, Brazil
- Present address: Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Present address: Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Present address: Abcam, Cambridge Science Park, Milton, Cambridge CB4 0FL, UK
| | - Kerstin B. Meyer
- *To whom correspondence should be addressed; Tel: +44 1223 769651; Fax: +44 1223 769510;
| |
Collapse
|
3
|
Ceccarelli S, Bei R, Vescarelli E, D'Amici S, di Gioia C, Modesti A, Romano F, Redler A, Marchese C, Angeloni A. Potential prognostic and diagnostic application of a novel monoclonal antibody against keratinocyte growth factor receptor. Mol Biotechnol 2015; 56:939-52. [PMID: 24899248 PMCID: PMC4155171 DOI: 10.1007/s12033-014-9773-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
KGFR is involved in the pathogenesis of several human cancers. In this study, we generated and characterized a monoclonal antibody specific to KGFR (SC-101 mAb) and evaluated its potential use in basic research and as a diagnostic and prognostic tool. The specificity and biological activity of the SC-101 mAb were evaluated by Western blotting, immunofluorescence, and immunoprecipitation analyses on various cell lines. KGFR expression in breast, pancreatic, and thyroid carcinoma was assessed by immunohistochemistry (IHC) with SC-101 mAb. KGFR expression levels revealed by SC-101 mAb resulted to increase proportionally with tumor grade in breast and pancreatic cancer. In addition, SC-101 mAb was able to detect KGFR down-modulation in thyroid cancer. SC-101 mAb might represent a useful tool for basic research applications, and it could also contribute to improve the accuracy of diagnosis and prognosis of epithelial tumors.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Association of physical activity and polymorphisms in FGFR2 and DNA methylation related genes with breast cancer risk. Cancer Epidemiol 2014; 38:708-14. [DOI: 10.1016/j.canep.2014.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/31/2014] [Accepted: 09/07/2014] [Indexed: 11/21/2022]
|
5
|
Frantsiyants EM, Komarova EF, Pozdnyakova VV, Rozenko LY, Pogorelova YA, Cheryarina ND, Khokhlova OV. Indicators of activation of plasminogen and growth factors in nevus and skin melanoma. Mol Biol 2014. [DOI: 10.1134/s0026893314030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
D’Amici S, Ceccarelli S, Vescarelli E, Romano F, Frati L, Marchese C, Angeloni A. TNFα modulates Fibroblast Growth Factor Receptor 2 gene expression through the pRB/E2F1 pathway: identification of a non-canonical E2F binding motif. PLoS One 2013; 8:e61491. [PMID: 23613863 PMCID: PMC3629046 DOI: 10.1371/journal.pone.0061491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/08/2013] [Indexed: 11/18/2022] Open
Abstract
Interactions between epithelium and mesenchyme during wound healing are not fully understood, but Fibroblast Growth Factors (FGFs) and their receptors FGFRs are recognized as key elements. FGFR2 gene encodes for two splicing transcript variants, FGFR2-IIIb or Keratinocyte Growth Factor Receptor (KGFR) and FGFR2-IIIc, which differ for tissue localization and ligand specificity. Proinflammatory cytokines play an essential role in the regulation of epithelial-mesenchymal interactions, and have been indicated to stimulate FGFs production. Here we demonstrated that upregulation of FGFR2 mRNA and protein expression is induced by the proinflammatory cytokines Tumor Necrosis Factor-α, Interleukin-1β and Interleukin 2. Furthermore, we found that TNFα determines FGFR2 transcriptional induction through activation of pRb, mediated by Raf and/or p38 pathways, and subsequent release of the transcription factor E2F1. Experiments based on FGFR2 promoter serial deletions and site-directed mutagenesis allowed us to identify a minimal responsive element that retains the capacity to be activated by E2F1. Computational analysis indicated that this element is a non-canonical E2F responsive motif. Thus far, the molecular mechanisms of FGFR2 upregulation during wound healing or in pathological events are not known. Our data suggest that FGFR2 expression can be modulated by local recruitment of inflammatory cytokines. Furthermore, since alterations in FGFR2 expression have been linked to the pathogenesis of certain human cancers, these findings could also provide elements for diagnosis and potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sirio D’Amici
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ferdinando Romano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Frati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Angeloni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
7
|
Lim J, Maher GJ, Turner GDH, Dudka-Ruszkowska W, Taylor S, Meyts ERD, Goriely A, Wilkie AOM. Selfish spermatogonial selection: evidence from an immunohistochemical screen in testes of elderly men. PLoS One 2012; 7:e42382. [PMID: 22879958 PMCID: PMC3412839 DOI: 10.1371/journal.pone.0042382] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/04/2012] [Indexed: 01/26/2023] Open
Abstract
The dominant congenital disorders Apert syndrome, achondroplasia and multiple endocrine neoplasia–caused by specific missense mutations in the FGFR2, FGFR3 and RET proteins respectively–represent classical examples of paternal age-effect mutation, a class that arises at particularly high frequencies in the sperm of older men. Previous analyses of DNA from randomly selected cadaveric testes showed that the levels of the corresponding FGFR2, FGFR3 and RET mutations exhibit very uneven spatial distributions, with localised hotspots surrounded by large mutation-negative areas. These studies imply that normal testes are mosaic for clusters of mutant cells: these clusters are predicted to have altered growth and signalling properties leading to their clonal expansion (selfish spermatogonial selection), but DNA extraction eliminates the possibility to study such processes at a tissue level. Using a panel of antibodies optimised for the detection of spermatocytic seminoma, a rare tumour of spermatogonial origin, we demonstrate that putative clonal events are frequent within normal testes of elderly men (mean age: 73.3 yrs) and can be classed into two broad categories. We found numerous small (less than 200 cells) cellular aggregations with distinct immunohistochemical characteristics, localised to a portion of the seminiferous tubule, which are of uncertain significance. However more infrequently we identified additional regions where entire seminiferous tubules had a circumferentially altered immunohistochemical appearance that extended through multiple serial sections that were physically contiguous (up to 1 mm in length), and exhibited enhanced staining for antibodies both to FGFR3 and a marker of downstream signal activation, pAKT. These findings support the concept that populations of spermatogonia in individual seminiferous tubules in the testes of older men are clonal mosaics with regard to their signalling properties and activation, thus fulfilling one of the specific predictions of selfish spermatogonial selection.
Collapse
Affiliation(s)
- Jasmine Lim
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Geoffrey J. Maher
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Gareth D. H. Turner
- Department of Cellular Pathology, NIHR Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Wioleta Dudka-Ruszkowska
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Taylor
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ewa Rajpert-De Meyts
- University Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anne Goriely
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Guo M, Liu W, Serra S, Asa SL, Ezzat S. FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression. Cancer Res 2012; 72:2017-27. [PMID: 22345151 DOI: 10.1158/0008-5472.can-11-3985] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternate splicing yields two distinct isoforms of the fibroblast growth factor (FGF) receptor FGFR2-IIIb and FGFR2-IIIc varying their extracellular structure in human thyroid cancer, in which FGFR expression is commonly dysregulated. In this study, we characterized the function of these variants in modulating thyroid cancer behavior. Enforced expression of either FGFR2-IIIb or FGFR2-IIIc in thyroid epithelial cancer cells reduced expression of fibronectin, MAGE-A3 and MMP9, while increasing p21 and enhancing Rb dephosphorylation. Consistent with these tumor-suppressive properties, FGFR2-IIIb and FGFR2-IIIc each diminished invasive behavior in vitro and reduced tumor growth and metastasis in vivo. Notably, these effects contrasted with those produced by expression of these FGFR isoforms in fibroblasts, in which they both stimulated cell growth. Moreover, in xenograft tumors generated by coimplantation of epithelial and fibroblast cells expressing that same isoform, there was no significant effect on tumor progression. Conversely, FGFR2-IIIb expression in epithelial cells yielded higher FGF4/FGF7 expression that, in the presence of FGFR2-IIIc-expressing fibroblasts, enhanced tumor progression. Together, our findings highlight the importance of cellular context in assigning growth properties to growth factor receptor isoforms. More specifically, they show how alternative splicing of FGFR2 yields heteroisoforms critical to the growth-promoting actions of FGFs that exert distinct epithelial-stromal effects in thyroid cancer.
Collapse
Affiliation(s)
- Miao Guo
- The Ontario Cancer Institute, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer. Breast Cancer Res Treat 2011; 133:997-1008. [PMID: 22124578 DOI: 10.1007/s10549-011-1883-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/12/2011] [Indexed: 12/28/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are tyrosine kinase receptors which have been implicated in breast cancer. The aim of this study was to evaluate FGFR-1, -2, -3, and -4 protein expressions in normal murine mammary gland development, and in murine and human breast carcinomas. Using immunohistochemistry and Western blot, we report a hormonal regulation of FGFR during postnatal mammary gland development. Progestin treatment of adult virgin mammary glands resulted in changes in localization of FGFR-3 from the cytoplasm to the nucleus, while treatment with 17-β-estradiol induced changes in the expressions and/or localizations of FGFR-2 and -3. In murine mammary carcinomas showing different degrees of hormone dependence, we found progestin-induced increased expressions, mainly of FGFR-2 and -3. These receptors were constitutively activated in hormone-independent variants. We studied three luminal human breast cancer cell lines growing as xenografts, which particularly expressed FGFR-2 and -3, suggesting a correlation between hormonal status and FGFR expression. Most importantly, in breast cancer samples from 58 patients, we found a strong association (P < 0.01; Spearman correlation) between FGFR-2 and -3 expressions and a weaker correlation of each receptor with estrogen receptor expression. FGFR-4 correlated with c-erbB2 over expression. We conclude that FGFR-2 and -3 may be mechanistically linked and can be potential targets for treatment of estrogen receptor-positive breast cancer patients.
Collapse
|
10
|
Huijts PEA, van Dongen M, de Goeij MCM, van Moolenbroek AJ, Blanken F, Vreeswijk MPG, de Kruijf EM, Mesker WE, van Zwet EW, Tollenaar RAEM, Smit VTHBM, van Asperen CJ, Devilee P. Allele-specific regulation of FGFR2 expression is cell type-dependent and may increase breast cancer risk through a paracrine stimulus involving FGF10. Breast Cancer Res 2011; 13:R72. [PMID: 21767389 PMCID: PMC3236336 DOI: 10.1186/bcr2917] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/13/2011] [Accepted: 07/18/2011] [Indexed: 02/04/2023] Open
Abstract
Introduction SNPs rs2981582 and rs2981578, located in a linkage disequilibrium block (LD block) within intron 2 of the fibroblast growth factor receptor 2 gene (FGFR2), are associated with a mildly increased breast cancer risk. Allele-specific regulation of FGFR2 mRNA expression has been reported previously, but the molecular basis for the association of these variants with breast cancer has remained elusive to date. Methods mRNA levels of FGFR2 and three fibroblast growth factor genes (FGFs) were measured in primary fibroblast and epithelial cell cultures from 98 breast cancer patients and correlated to their rs2981578 genotype. The phosphorylation levels of downstream FGFR2 targets, FGF receptor substrate 2α (FRS2α) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), were quantified in skin fibroblasts exposed to FGF2. Immunohistochemical markers for angiogenesis and lymphocytic infiltrate were semiquantitatively assessed in 25 breast tumors. Results The risk allele of rs2981578 was associated with increased FGFR2 mRNA levels in skin fibroblasts, but not in skin epithelial cell cultures. FGFR2 mRNA levels in skin fibroblasts and breast fibroblasts correlated strongly in the patients from whom both cultures were available. Tumor-derived fibroblasts expressed, on average, eight times more FGFR2 mRNA than the corresponding fibroblasts from normal breast tissue. Fibroblasts with higher FGFR2 mRNA expression showed more FRS2α and ERK1/2 phosphorylation after exposure to FGF2. In fibroblasts, higher FGFR2 expression correlated with higher FGF10 expression. In 25 breast tumors, no associations between breast tumor characteristics and fibroblast FGFR2 mRNA levels were found. Conclusions The influence of rs2981578 genotypes on FGFR2 mRNA expression levels is cell type-dependent. Expression differences correlated well with signaling levels of the FGFR2 pathway. Our results suggest that the increased breast cancer risk associated with SNP rs2981578 is due to increased FGFR2 signaling activity in stromal fibroblasts, possibly also involving paracrine FGF10 signaling.
Collapse
Affiliation(s)
- Petra E A Huijts
- Department of Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, Purdie CA, Thompson AM, Jordan LB, Berg JN. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype. BMC Res Notes 2011; 4:72. [PMID: 21418638 PMCID: PMC3073906 DOI: 10.1186/1756-0500-4-72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 03/21/2011] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Single Nucleotide Polymorphisms (SNPs) in intron 2 of the Fibroblast Growth Factor Receptor Type 2 (FGFR2) gene, including rs2981582, contribute to multifactorial breast cancer susceptibility. The high risk polymorphism haplotype in the FGFR2 gene has been associated with increased mRNA transcription and altered transcription factor binding but the effect on FGFR2 protein expression is unknown. 40 breast tumours were identified from individuals with known rs2981582 genotype. Tumour sections were stained for FGFR2 protein expression, and scored for nuclear and cytoplasmic staining in tumour and surrounding normal tissue. FINDINGS FGFR2 immunohistochemistry demonstrated variable nuclear staining in normal tissue and tumour tissue, as well as consistent cytoplasmic staining. We did not find an association between nuclear staining for FGFR2 and genotype, and there was no association between FGFR2 staining and estrogen or progestogen receptor status. There was an association between presence of nuclear staining for FGFR2 in normal tissue and presence of nuclear staining in the adjacent tumour (Fishers exact test, p = 0.002). CONCLUSIONS Variable nuclear staining for FGFR2 in breast cancer, but an absence of correlation with rs2981582 genotype suggests that the mechanism of action of polymorphisms at the FGFR2 locus may be more complex than a direct effect on mRNA expression levels in the final cancer. The effect may relate to FGFR2 function or localisation during breast development or tumourigenesis. Nuclear localisation of FGFR2 suggests an important additional role for this protein in breast development and breast cancer, in addition to its function as a classical cell surface receptor.
Collapse
Affiliation(s)
- Amy J Martin
- Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Neagu M, Constantin C, Tanase C. Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma. Expert Rev Mol Diagn 2011; 10:897-919. [PMID: 20964610 DOI: 10.1586/erm.10.81] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skin melanoma, a life-threatening disease, has a recently reported worldwide increase in incidence, despite primary prevention. Skin melanoma statistics emphasize the need for finding markers related to the immune response of the host. The mechanisms that are able to over-power the local immune surveillance comprise molecules that can be valuable markers for diagnosis and prognosis. This article summarizes the immune markers that can monitor the disease stage and evaluate the efficacy of therapeutic interventions. Recent data regarding immunotherapy are presented in the context of tumor escape from immune surveillance and the immune molecules that are both targets and a means of monitoring. Perspectives for developing immune interventions for skin melanoma management and the position of tissue or soluble immune markers as a diagnostic/prognostic panel are evaluated. State-of-the-art technology is emphasized for developing immune molecular signatures for a complex characterization of the patient's immunological status.
Collapse
Affiliation(s)
- Monica Neagu
- Victor Babes' National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania.
| | | | | |
Collapse
|
13
|
Lin SJ, Cawson J, Hill P, Haviv I, Jenkins M, Hopper JL, Southey MC, Campbell IG, Thompson EW. Image-guided sampling reveals increased stroma and lower glandular complexity in mammographically dense breast tissue. Breast Cancer Res Treat 2011; 128:505-16. [PMID: 21258862 DOI: 10.1007/s10549-011-1346-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
14
|
Zhu X, Zheng L, Asa SL, Ezzat S. Loss of heterozygosity and DNA methylation affect germline fibroblast growth factor receptor 4 polymorphism to direct allelic selection in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2860-9. [PMID: 21037081 DOI: 10.2353/ajpath.2010.100509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genome-wide association studies highlight the importance of the fibroblast growth factor (FGF) receptor as a risk factor for breast cancer development. In particular, FGFR4 has been implicated in membrane ruffling, cancer cell invasiveness, and clinical chemoresistance in breast cancer. In this work, we studied FGFR4 in both human breast cancers and cell lines. We examined primary human microdissected breast samples for FGFR4 mutations, polymorphisms, loss of heterozygosity (LOH), and DNA methylation status. We identified no activating somatic mutations of FGFR4; however, we did identify a high proportion of the FGFR4-R388 heterozygous germline polymorphism. Analysis of paired microdissected samples uncovered selective LOH at the FGFR4 locus in 50% of primary tumors. This LOH involved the FGFR4-WT allele as frequently as the cancer progression-associated FGFR4-G388R polymorphic allele. Further, we identified DNA methylation in one-third of cases that targeted the FGFR4-WT allele more often and occurred more frequently either in concert with or exclusively in lymph node metastases. The role of DNA methylation in silencing the FGFR4-WT allele was supported by azacytidine treatment findings and was also confirmed in mouse xenograft studies, demonstrating selective FGFR4-WT allelic methylation with corresponding gene down-regulation. These findings support a growth advantage function for FGFR4-R388 and underscore the complex role of DNA methylation and LOH in determining the penetrance of allelic selection in breast cancer progression. These findings therefore have critical therapeutic importance.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|