1
|
Galvão JGFM, Cavalcante-Silva LHA, de Almeida Lima É, Carvalho DC, Alves AF, Mascarenhas SR. Ouabain modulates airway remodeling caused by Th2-high asthma in mice. Int Immunopharmacol 2022; 109:108808. [DOI: 10.1016/j.intimp.2022.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
|
2
|
Dong H, Hao Y, Li W, Yang W, Gao P. IL-36 Cytokines: Their Roles in Asthma and Potential as a Therapeutic. Front Immunol 2022; 13:921275. [PMID: 35903102 PMCID: PMC9314646 DOI: 10.3389/fimmu.2022.921275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily, which consists of three agonists (IL-36α, IL-36β and IL-36γ) and an IL-36 receptor antagonist (IL-36Ra). IL-36 cytokines are crucial for immune and inflammatory responses. Abnormal levels of IL-36 cytokine expression are involved in the pathogenesis of inflammation, autoimmunity, allergy and cancer. The present study provides a summary of recent reports on IL-36 cytokines that participate in the pathogenesis of inflammatory diseases, and the potential mechanisms underlying their roles in asthma. Abnormal levels of IL-36 cytokines are associated with the pathogenesis of different types of asthma through the regulation of the functions of different types of cells. Considering the important role of IL-36 cytokines in asthma, these may become a potential therapeutic target for asthma treatment. However, existing evidence is insufficient to fully elucidate the specific mechanism underlying the action of IL-36 cytokines during the pathological process of asthma. The possible mechanisms and functions of IL-36 cytokines in different types of asthma require further studies.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| |
Collapse
|
3
|
Alobaidi A, Alsamarai A, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem 2021; 20:317-332. [PMID: 34544350 DOI: 10.2174/1871523020666210920100707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Asthma is a chronic disease with abnormal inflammatory and immunological responses. The disease initiated by antigens in subjects with genetic susceptibility. However, environmental factors play a role in the initiation and exacerbation of asthma attack. Asthma is T helper 2 (Th2)-cell-mediated disease. Recent studies indicated that asthma is not a single disease entity, but it is with multiple phenotypes and endotypes. The pathophysiological changes in asthma included a series of subsequent continuous vicious circle of cellular activation contributed to induction of chemokines and cytokines that potentiate inflammation. The heterogeneity of asthma influenced the treatment response. The asthma pathogenesis driven by varied set of cells such as eosinophils, basophils, neutrophils, mast cells, macrophages, epithelial cells and T cells. In this review the role of T cells, macrophage, and epithelial cells are discussed.
Collapse
Affiliation(s)
- Amina Alobaidi
- Kirkuk University College of Veterinary Medicine, Kirkuk. Iraq
| | - Abdulghani Alsamarai
- Aalborg Academy College of Medicine [AACOM], Denmark. Tikrit University College of Medicine, [TUCOM], Tikrit. Iraq
| | | |
Collapse
|
4
|
Kalidhindi RSR, Ambhore NS, Balraj P, Schmidt T, Khan MN, Sathish V. Androgen receptor activation alleviates airway hyperresponsiveness, inflammation, and remodeling in a murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2021; 320:L803-L818. [PMID: 33719566 DOI: 10.1152/ajplung.00441.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies demonstrate an apparent sex-based difference in the prevalence of asthma, with a higher risk in boys than girls, which is reversed postpuberty, where women become more prone to asthma than men, suggesting a plausible beneficial role for male hormones, especially androgens as a regulator of pathophysiology in asthmatic lungs. Using a murine model of asthma developed with mixed allergen (MA) challenge, we report a significant change in airway hyperresponsiveness (AHR), as demonstrated by increased thickness of epithelial and airway smooth muscle layers and collagen deposition, as well as Th2/Th17-biased inflammation in the airways of non-gonadectomized (non-GDX) and gonadectomized (GDX) male mice. Here, compared with non-GDX mice, MA-induced AHR and inflammatory changes were more prominent in GDX mice. Activation of androgen receptor (AR) using 5α-dihydrotestosterone (5α-DHT, AR agonist) resulted in decreased Th2/Th17 inflammation and remodeling-associated changes, resulting in improved lung function compared with MA alone challenged mice, especially in GDX mice. These changes were not observed with Flutamide (Flut, AR antagonist). Overall, we show that AR exerts a significant and beneficial role in asthma by regulating AHR and inflammation.
Collapse
Affiliation(s)
- Rama Satyanarayana Raju Kalidhindi
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Taylor Schmidt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
5
|
The Role of T Cells and Macrophages in Asthma Pathogenesis: A New Perspective on Mutual Crosstalk. Mediators Inflamm 2020; 2020:7835284. [PMID: 32922208 PMCID: PMC7453253 DOI: 10.1155/2020/7835284] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Asthma is associated with innate and adaptive immunity mediated by immune cells. T cell or macrophage dysfunction plays a particularly significant role in asthma pathogenesis. Furthermore, crosstalk between them continuously transmits proinflammatory or anti-inflammatory signals, causing the immune cell activation or repression in the immune response. Consequently, the imbalanced immune microenvironment is the major cause of the exacerbation of asthma. Here, we discuss the role of T cells, macrophages, and their interactions in asthma pathogenesis.
Collapse
|
6
|
Ambhore NS, Kalidhindi RSR, Loganathan J, Sathish V. Role of Differential Estrogen Receptor Activation in Airway Hyperreactivity and Remodeling in a Murine Model of Asthma. Am J Respir Cell Mol Biol 2020; 61:469-480. [PMID: 30958966 DOI: 10.1165/rcmb.2018-0321oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that airway hyperresponsiveness (AHR) is a characteristic feature of asthma. Epidemiological studies have confirmed that the severity of asthma is greater in women, suggesting a critical role of female sex steroid hormones (especially estrogen). Very few in vivo studies have examined the role of sex steroid hormones in asthma, and the sequence of events that occur through differential activation of estrogen receptors (ERs) remains to be determined in asthmatic airways. Our recent in vitro findings indicated that ERβ had increased expression in asthmatic airway smooth muscle (ASM), and that its activation by an ERβ-specific agonist downregulated airway remodeling. In this study, we translated the in vitro findings to a murine asthma model and examined the differential role of ER activation in modulating lung mechanics. C57BL/6J male, female, and ovariectomized mice were exposed to mixed allergen (MA) and subcutaneously implanted with sustained-release pellets of placebo, an ERα agonist (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [PPT]), and/or an ERβ agonist (WAY-200070). We then evaluated the effects of these treatments on airway mechanics, biochemical, molecular, and histological parameters. Mice exposed to MA showed a significant increase in airway resistance, elastance, and tissue damping, and a decrease in compliance; pronounced effects were observed in females. Compared with PPT, WAY treatment significantly reversed the MA-induced changes. The increased mRNA/protein expression of ERα, ERβ, and remodeling genes observed in MA-treated mice was significantly reversed in WAY-treated mice. This novel study indicates that activation of ERβ signaling downregulates AHR and airway remodeling, and is a promising target in the development of treatments for asthma.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and
| | | | - Jagadish Loganathan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and.,Department of Anesthesiology and Perioperative Medicine and.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Maternal Obesity in Mice Exacerbates the Allergic Inflammatory Response in the Airways of Male Offspring. Nutrients 2019; 11:nu11122902. [PMID: 31805682 PMCID: PMC6950392 DOI: 10.3390/nu11122902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
It was previously demonstrated that non-allergen-sensitized rodents born to mothers exposed to a high-fat diet (HFD) spontaneously develop lower respiratory compliance and higher respiratory resistance. In the present study, we sought to determine if mice born to mothers consuming HFD would exhibit changes in inflammatory response and lung remodeling when subjected to ovalbumin (OVA) sensitization/challenge in adult life. Mice born to dams consuming either HFD or standard chow had increased bronchoalveolar lavage (BAL) levels of IL-1β, IL-4, IL-5, IL-10, IL-13, TNF-α and TGF-β1 after challenge with OVA. IL-4, IL-13, TNF-α and TGF-β1 levels were further increased in the offspring of HFD-fed mothers. Mice born to obese dams also had exacerbated values of leukocyte infiltration in lung parenchyma, eosinophil and neutrophil counts in BAL, mucus overproduction and collagen deposition. The programming induced by maternal obesity was accompanied by increased expression of miR-155 in peripheral-blood mononuclear cells and reduced miR-133b in trachea and lung tissue in adult life. Altogether, the present data support the unprecedented notion that the progeny of obese mice display exacerbated responses to sensitization/challenge with OVA, leading to the intensification of the morphological changes of lung remodeling. Such changes are likely to result from long-lasting changes in miR-155 and miR-133b expression.
Collapse
|
8
|
Michaeloudes C, Bhavsar PK, Mumby S, Xu B, Hui CKM, Chung KF, Adcock IM. Role of Metabolic Reprogramming in Pulmonary Innate Immunity and Its Impact on Lung Diseases. J Innate Immun 2019; 12:31-46. [PMID: 31786568 DOI: 10.1159/000504344] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Lung innate immunity is the first line of defence against inhaled allergens, pathogens and environmental pollutants. Cellular metabolism plays a key role in innate immunity. Catabolic pathways, including glycolysis and fatty acid oxidation (FAO), are interconnected with biosynthetic and redox pathways. Innate immune cell activation and differentiation trigger extensive metabolic changes that are required to support their function. Pro-inflammatory polarisation of macrophages and activation of dendritic cells, mast cells and neutrophils are associated with increased glycolysis and a shift towards the pentose phosphate pathway and fatty acid synthesis. These changes provide the macromolecules required for proliferation and inflammatory mediator production and reactive oxygen species for anti-microbial effects. Conversely, anti-inflammatory macrophages use primarily FAO and oxidative phosphorylation to ensure efficient energy production and redox balance required for prolonged survival. Deregulation of metabolic reprogramming in lung diseases, such as asthma and chronic obstructive pulmonary disease, may contribute to impaired innate immune cell function. Understanding how innate immune cell metabolism is altered in lung disease may lead to identification of new therapeutic targets. This is important as drugs targeting a number of metabolic pathways are already in clinical development for the treatment of other diseases such as cancer.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom,
| | - Pankaj K Bhavsar
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Sharon Mumby
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Bingling Xu
- Respiratory and Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Christopher Kim Ming Hui
- Respiratory and Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kian Fan Chung
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Ian M Adcock
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
9
|
de Groot LES, van der Veen TA, Martinez FO, Hamann J, Lutter R, Melgert BN. Oxidative stress and macrophages: driving forces behind exacerbations of asthma and chronic obstructive pulmonary disease? Am J Physiol Lung Cell Mol Physiol 2018; 316:L369-L384. [PMID: 30520687 DOI: 10.1152/ajplung.00456.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is a common feature of obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Lung macrophages are key innate immune cells that can generate oxidants and are known to display aberrant polarization patterns and defective phagocytic responses in these diseases. Whether these characteristics are linked in one way or another and whether they contribute to the onset and severity of exacerbations in asthma and COPD remain poorly understood. Insight into oxidative stress, macrophages, and their interactions may be important in fully understanding acute worsening of lung disease. This review therefore highlights the current state of the art regarding the role of oxidative stress and macrophages in exacerbations of asthma and COPD. It shows that oxidative stress can attenuate macrophage function, which may result in impaired responses toward exacerbating triggers and may contribute to exaggerated inflammation in the airways.
Collapse
Affiliation(s)
- Linsey E S de Groot
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - T Anienke van der Veen
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen , Groningen , The Netherlands.,Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Fernando O Martinez
- Department of Biochemical Sciences, University of Surrey , Guildford , United Kingdom
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen , Groningen , The Netherlands.,Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
10
|
CpG-oligodeoxynucleotides may be effective for preventing ionizing radiation induced pulmonary fibrosis. Toxicol Lett 2018; 292:181-189. [PMID: 29679710 DOI: 10.1016/j.toxlet.2018.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022]
Abstract
Pulmonary fibrosis is a serious adverse effect of radiotherapy for thoracic tumor, which is believed to be a process that is tightly regulated by the phenotype of the developing Th response after radiation. Here, we will investigate whether CpG-oligodeoxynucleotides (ODN) prevent radiation-induced pulmonary fibrosis by shifting the imbalance of Th1 and Th2 response and summarizes the possible mechanism. In this study, female C57BL/6 mice were chosen to preform pulmonary fibrosis model, the whole-thorax of mice was exposed to a single radiation dose of 15 Gy. When irradiated mice were administrated with CpG-ODN, forming of pulmonary fibrosis was significantly prevented. Th2-related cytokines (IL-4 and IL-13) expression decreased, Th1 related-cytokine (IFN-γ and IL-12) expression increased. Alveolar macrophage accumulation was reduced in irradiated tissue. Profibrotic cytokine TGF-β1 expression stayed at lower level. In TGF-β1-Smad-dependent pathways, TGF-β1, TβR and phosphor-Smad 2/3 were down regulated, and Smad 7 was up regulated. These suggested that CpG-ODN prevented pulmonary fibrosis after radiation. The mechanism might be associated with reduction of alveolar macrophages accumulation and profibrogenic cytokines secretion TGF-β1 through stimulating the combination of Th1-promoting and Th2-limiting responses after radiation, and finally inhibited the fibrosis-related downstream TGF-β1-Smad-dependent pathway.
Collapse
|
11
|
Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK, Mattes J. Modeling T H 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 2018; 278:20-40. [PMID: 28658543 DOI: 10.1111/imr.12549] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical TH 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam M Collison
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Rakesh K Kumar
- Pathology, UNSW Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Joerg Mattes
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| |
Collapse
|
12
|
Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, Barber D, Escribese MM. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy 2017; 47:442-456. [PMID: 28160515 DOI: 10.1111/cea.12902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic asthma is a prominent disease especially during childhood. Indoor allergens, in general, and particularly house dust mites (HDM) are the most prevalent sensitizers associated with allergic asthma. Available data show that 65-130 million people are mite-sensitized world-wide and as many as 50% of these are asthmatic. In fact, sensitization to HDM in the first years of life can produce devastating effects on pulmonary function leading to asthmatic syndromes that can be fatal. To date, there has been considerable research into the pathological pathways and structural changes associated with allergic asthma. However, limitations related to the disease heterogeneity and a lack of knowledge into its pathophysiology have impeded the generation of valuable data needed to appropriately phenotype patients and, subsequently, treat this disease. Here, we report a systematic and integral analysis of the disease, from airway remodelling to the immune response taking place throughout the disease stages. We present an overview of metabolomics, the management of complex multifactorial diseases through the analysis of all possible metabolites in a biological sample, obtaining a global interpretation of biological systems. Special interest is placed on the challenges to obtain biological samples and the methodological aspects to acquire relevant information, focusing on the identification of novel biomarkers associated with specific phenotypes of allergic asthma. We also present an overview of the metabolites cited in the literature, which have been related to inflammation and immune response in asthma and other allergy-related diseases.
Collapse
Affiliation(s)
- A Villaseñor
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Rosace
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Obeso
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M Pérez-Gordo
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - T Chivato
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - C Barbas
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Barber
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M M Escribese
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
13
|
Nguyen TH, Maltby S, Tay HL, Eyers F, Foster PS, Yang M. Identification of IFN-γ and IL-27 as Critical Regulators of Respiratory Syncytial Virus-Induced Exacerbation of Allergic Airways Disease in a Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 200:237-247. [PMID: 29167232 DOI: 10.4049/jimmunol.1601950] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
Respiratory syncytial virus (RSV) infection induces asthma exacerbations, which leads to worsening of clinical symptoms and may result in a sustained decline in lung function. Exacerbations are the main cause of morbidity and mortality associated with asthma, and significantly contribute to asthma-associated healthcare costs. Although glucocorticoids are used to manage exacerbations, some patients respond to them poorly. The underlying mechanisms associated with steroid-resistant exacerbations remain largely unknown. We have previously established a mouse model of RSV-induced exacerbation of allergic airways disease, which mimics hallmark clinical features of asthma. In this study, we have identified key roles for macrophage IFN-γ and IL-27 in the regulation of RSV-induced exacerbation of allergic airways disease. Production of IFN-γ and IL-27 was steroid-resistant, and neutralization of IFN-γ or IL-27 significantly suppressed RSV-induced steroid-resistant airway hyperresponsiveness and airway inflammation. We have previously implicated activation of pulmonary macrophage by TNF-α and/or MCP-1 in the mechanisms of RSV-induced exacerbation. Stimulation of pulmonary macrophages with TNF-α and/or MCP-1 induced expression of both IFN-γ and IL-27. Our findings highlight critical roles for IFN-γ and IL-27, downstream of TNF-α and MCP-1, in the mechanism of RSV-induced exacerbation. Thus, targeting the pathways that these factors activate may be a potential therapeutic approach for virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Fiona Eyers
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and .,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales 2308, Australia; and .,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
14
|
Thiriou D, Morianos I, Xanthou G, Samitas K. Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. Int Immunopharmacol 2017; 48:43-54. [PMID: 28463786 DOI: 10.1016/j.intimp.2017.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/15/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
The respiratory system is constantly in direct contact with the environment and, has therefore, developed strong innate and adaptive immune responses to combat pathogens. Unlike adaptive immunity which is mounted later in the course of the immune response and is naive at the outset, innate immunity provides the first line of defense against microbial agents, while also promoting resolution of inflammation. In the airways, innate immune effector cells mainly consist of eosinophils, neutrophils, mast cells, basophils, macrophages/monocytes, dendritic cells and innate lymphoid cells, which attack pathogens directly or indirectly through the release of inflammatory cytokines and antimicrobial peptides, and coordinate T and B cell-mediated adaptive immunity. Airway epithelial cells are also critically involved in shaping both the innate and adaptive arms of the immune response. Chronic allergic airway inflammation and linked asthmatic disease is often considered a result of aberrant activation of type 2 T helper cells (Th2) towards innocuous environmental allergens; however, innate immune cells are increasingly recognized as key players responsible for the initiation and the perpetuation of allergic responses. Moreover, innate cells participate in immune response regulation through the release of anti-inflammatory mediators, and guide tissue repair and the maintenance of airway homeostasis. The scope of this review is to outline existing knowledge on innate immune responses involved in allergic airway inflammation, highlight current gaps in our understanding of the underlying molecular and cellular mechanisms and discuss the potential use of innate effector cells in new therapeutic avenues.
Collapse
Affiliation(s)
- Despoina Thiriou
- 2(nd) Respiratory Medicine Dept., Athens Chest Hospital "Sotiria", Athens, Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Konstantinos Samitas
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece; 7(th) Respiratory Medicine Dept. and Asthma Center, Athens Chest Hospital "Sotiria", Athens, Greece.
| |
Collapse
|
15
|
Maltby S, Tay HL, Yang M, Foster PS. Mouse models of severe asthma: Understanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology 2017; 22:874-885. [PMID: 28401621 DOI: 10.1111/resp.13052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Severe asthma has significant disease burden and results in high healthcare costs. While existing therapies are effective for the majority of asthma patients, treatments for individuals with severe asthma are often ineffective. Mouse models are useful to identify mechanisms underlying disease pathogenesis and for the preclinical assessment of new therapies. In fact, existing mouse models have contributed significantly to our understanding of allergic/eosinophilic phenotypes of asthma and facilitated the development of novel targeted therapies (e.g. anti-IL-5 and anti-IgE). These therapies are effective in relevant subsets of severe asthma patients. Unfortunately, non-allergic/non-eosinophilic asthma, steroid resistance and disease exacerbation remain areas of unmet clinical need. No mouse model encompasses all features of severe asthma. However, mouse models can provide insight into pathogenic pathways that are relevant to severe asthma. In this review, as examples, we highlight models relevant to understanding steroid resistance, chronic tissue remodelling and disease exacerbation. Although these models highlight the complexity of the immune pathways that may underlie severe asthma, they also provide insight into new potential therapeutic approaches.
Collapse
Affiliation(s)
- Steven Maltby
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock L Tay
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Ming Yang
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
16
|
Kumar RK, Herbert C, Foster PS. Mouse models of acute exacerbations of allergic asthma. Respirology 2016; 21:842-9. [PMID: 26922049 DOI: 10.1111/resp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 01/23/2016] [Indexed: 12/24/2022]
Abstract
Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Cristan Herbert
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Paul S Foster
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
17
|
Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann Am Thorac Soc 2015; 11 Suppl 5:S306-13. [PMID: 25525738 DOI: 10.1513/annalsats.201401-028aw] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airway tolerance, a state of immunological surveillance, suppresses the development of lung inflammatory disorders that are driven by various pathological effector cells of the immune system. Tolerance in the lung to inhaled antigens is primarily mediated by regulatory T cells (Treg cells) that can inhibit effector T cells via a myriad of mechanisms. Accumulating evidence suggests that regulatory antigen-presenting cells are critical for generating Treg cells and/or maintaining the suppressive environment in the lung. This review focuses on the control of airway tolerance by Treg cells and the role of regulatory lung tissue and alveolar macrophages, and lung and lymph node dendritic cells, in contributing to airway tolerance that is associated with suppression of allergic asthmatic disease.
Collapse
|
18
|
Shadie AM, Herbert C, Kumar RK. Ambient particulate matter induces an exacerbation of airway inflammation in experimental asthma: role of interleukin-33. Clin Exp Immunol 2014; 177:491-9. [PMID: 24730559 DOI: 10.1111/cei.12348] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 02/05/2023] Open
Abstract
High levels of ambient environmental particulate matter (PM10 i.e. < 10 μm median aerodynamic diameter) have been linked to acute exacerbations of asthma. We examined the effects of delivering a single dose of Sydney PM10 by intranasal instillation to BALB/c mice that had been sensitized to ovalbumin and challenged repeatedly with a low (≈3 mg/m(3)) mass concentration of aerosolized ovalbumin for 4 weeks. Responses were compared to animals administered carbon black as a negative control, or a moderate (≈30 mg/m(3)) concentration of ovalbumin to simulate an allergen-induced acute exacerbation of airway inflammation. Delivery of PM10 to mice, in which experimental mild chronic asthma had previously been established, elicited characteristic features of enhanced allergic inflammation of the airways, including eosinophil and neutrophil recruitment, similar to that in the allergen-induced exacerbation. In parallel, there was increased expression of mRNA for interleukin (IL)-33 in airway tissues and an increased concentration of IL-33 in bronchoalveolar lavage fluid. Administration of a monoclonal neutralizing anti-mouse IL-33 antibody prior to delivery of particulates significantly suppressed the inflammatory response induced by Sydney PM10, as well as the levels of associated proinflammatory cytokines in lavage fluid. We conclude that IL-33 plays a key role in driving airway inflammation in this novel experimental model of an acute exacerbation of chronic allergic asthma induced by exposure to PM10.
Collapse
Affiliation(s)
- A M Shadie
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
19
|
Resolvin E1 promotes resolution of inflammation in a mouse model of an acute exacerbation of allergic asthma. Clin Sci (Lond) 2014; 126:805-14. [PMID: 24344649 DOI: 10.1042/cs20130623] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endogenous mediators, such as RvE1 (resolvin E1), promote resolution of an inflammatory response and have potential as novel therapeutic agents. In the present study, we investigated the activity of RvE1 in a model of an acute exacerbation of chronic allergic asthma in mice. Animals sensitized to OVA (ovalbumin) received controlled low-level challenge with aerosolized antigen for 4 weeks, followed by a single moderate-level challenge to simulate an allergen-induced exacerbation of asthmatic inflammation. Induction of an exacerbation was associated with rapid recruitment of neutrophils, lymphocytes and eosinophils, together with increased levels of Th2 and pro-inflammatory cytokines. When administered before the final moderate-level challenge, RvE1 had only a modest effect on airway inflammation. To assess its effects when administered after induction of an exacerbation, we first characterized the cellular and molecular events associated with spontaneous resolution of airway inflammation over the following 96 h. Subsequently, we showed that administration of RvE1 at 2 and 8 h after the final challenge accelerated this process significantly. Specifically, RvE1 promoted a decline in the number of inflammatory cells, concentration of cytokines in lavage fluid and expression of mRNA for cytokines by macrophages, confirming its pro-resolution activity. In vitro, RvE1 had no apparent effect on lymphocytes, but suppressed significantly cytokine production by pulmonary macrophages, with evidence of down-regulation of the nuclear translocation of NF-κB (nuclear factor κB) p65 in these cells. The present study provides novel evidence that RvE1 can facilitate resolution of airway inflammation in a clinically relevant model of an acute exacerbation of asthma, possibly via its effects on activated pulmonary macrophages.
Collapse
|
20
|
Winkler C, Witte L, Moraw N, Faulenbach C, Müller M, Holz O, Schaumann F, Hohlfeld JM. Impact of endobronchial allergen provocation on macrophage phenotype in asthmatics. BMC Immunol 2014; 15:12. [PMID: 24612750 PMCID: PMC4007705 DOI: 10.1186/1471-2172-15-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 02/08/2023] Open
Abstract
Background The role of M2 polarized macrophages (MΦ) during the allergic airway inflammation has been discussed in various animal models. However, their presence and relevance during the chronic and acute phase of allergic airway inflammation in humans has not been fully elucidated so far. In the present study we phenotypically characterized macrophages with regard to M2 polarization in mice, a human in vitro and a human ex vivo model with primary lung cells after endobronchial provocation. Results Macrophages remained polarized beyond clearance of the acute allergic airway inflammation in mice. Alveolar macrophages of asthmatics revealed increased mRNA expression of CCL13, CCL17 and CLEC10A in response to allergen challenge as well as increased surface expression of CD86. Further, mRNA expression of CCL13, CCL17, and CLEC10A was increased in asthmatics at baseline compared to healthy subjects. The mRNA expression of CCL17 and CLEC10A correlated significantly with the degree of eosinophilia (each P < .01). Furthermore, macrophages from asthmatics released significant amounts of CCL17 protein in vitro which was also found increased in BAL fluid after allergen provocation. Conclusions This study supports previous findings of M2 macrophage polarization in asthmatic subjects during the acute course of the allergic inflammation and provides evidence for their contribution to the Th2 inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jens M Hohlfeld
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
21
|
Herbert C, Shadie AM, Bunting MM, Tedla N, Garthwaite L, Freeman A, Yoo H, Park SH, Kumar RK. Anti-inflammatory and anti-remodelling effects of ISU201, a modified form of the extracellular domain of human BST2, in experimental models of asthma: association with inhibition of histone acetylation. PLoS One 2014; 9:e90436. [PMID: 24594933 PMCID: PMC3940910 DOI: 10.1371/journal.pone.0090436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/31/2014] [Indexed: 11/19/2022] Open
Abstract
There are few alternatives to glucocorticosteroids for treatment of asthma. We assessed the activity of a novel protein drug designated ISU201, the extracellular domain of the human cell surface protein BST2, stabilised by fusion with the Fc region of IgG, in mouse models of mild chronic asthma and an acute exacerbation of asthma. The ability of ISU201 to suppress airway inflammation and remodelling was compared with that of dexamethasone. Female BALB/c mice were systemically sensitised with ovalbumin, then received controlled low-level challenge with aerosolised ovalbumin for 6 weeks, which induced lesions of mild chronic asthma, and were treated with drugs during the final 2 weeks. Alternatively, sensitised mice received 4 weeks of chronic low-level challenge and were treated 24 and 2 hours before a final single moderate-level challenge, which triggered acute airway inflammation simulating an asthmatic exacerbation. Inflammation and remodelling were quantified, as was the expression of pro-inflammatory cytokines in bronchoalveolar lavage fluid and tissues. To identify cellular targets of ISU201, we assessed the effects of the drug on activated lymphocytes, macrophages and airway epithelial cells. In the model of mild chronic asthma, ISU201 was as effective as dexamethasone in suppressing airway inflammation and most changes of remodelling. In the model of an allergen-induced acute exacerbation of chronic asthma, ISU201 was also an effective anti-inflammatory agent, although it was less active than dexamethasone. The drug acted on multiple cellular targets, suppressing production of pro-inflammatory cytokines by lymphocytes and macrophages. ISU201 significantly reduced acetylation of histone H4 in airway epithelial cells, suggesting at least one potential mechanism of action. We conclude that in these models of asthma, ISU201 is a broad-spectrum inhibitor of both airway inflammation and remodelling. Thus, unlike drugs which target specific mediators, it could potentially be an alternative or an adjunct to glucocorticoids for the treatment of asthma.
Collapse
Affiliation(s)
- Cristan Herbert
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Alexander M. Shadie
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Melissa M. Bunting
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Linda Garthwaite
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Araluen Freeman
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | - Rakesh K. Kumar
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
22
|
The role of macrophages in obstructive airways disease: chronic obstructive pulmonary disease and asthma. Cytokine 2013; 64:613-25. [PMID: 24084332 DOI: 10.1016/j.cyto.2013.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/15/2022]
Abstract
Macrophages are a major cellular component of the innate immune system, and play an important role in the recognition of microbes, particulates, and immunogens and to the regulation of inflammatory responses. In the lung, macrophages react with soluble proteins that bind microbial products in order to remove pathogens and particles and to maintain the sterility of the airway tract. Chronic obstructive pulmonary disease and asthma are both obstructive airway diseases that involve chronic inflammation of the respiratory tract which contributes to disease progression. In the case of COPD, there is increasing evidence that lung macrophages orchestrate inflammation through the release of chemokines that attract neutrophils, monocytes and T cells and the release of several proteases. On the other hand, in asthma, it seems that alveolar macrophages are inappropriately activated and are implicated in the development and progression of the disease. In this review we summarize the current basic and clinical research studies which highlight the role of macrophages in asthma and COPD.
Collapse
|
23
|
Herbert C, Shadie AM, Kumar RK. Interleukin-17 signalling in a murine model of mild chronic asthma. Int Arch Allergy Immunol 2013; 162:253-62. [PMID: 24022125 DOI: 10.1159/000353247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The role of Th17 cell-derived cytokines in the pathogenesis of airway inflammation and remodelling in mild asthma remains unclear. We investigated this in a mouse model which reproduces most of the features of the human disease. METHODS Systemically sensitised BALB/c mice were challenged via the airways with a low mass concentration of ovalbumin aerosol for 8 weeks to induce lesions of mild chronic asthma. Changes were compared with those in animals deficient in signalling via the interleukin (IL)-17 receptor A (IL-17R). Low-passage airway epithelial cells (AEC) and fibroblasts were cultured with IL-17A, or with media from Th17-polarised cells, to assess activation. RESULTS In CD4+ T cells from chronically challenged mice, expression of mRNA for Th17 cytokines IL-17A, IL-17F, IL-21 and IL-22 was significantly increased. Both recombinant IL-17A and media from Th17 cells significantly stimulated the production of various pro-inflammatory and pro-remodelling cytokines by AEC and fibroblasts. In the mouse model, abrogation of IL-17R signalling had no effect on the development of airway inflammation or on most changes of remodelling. However, numbers of mucus-producing cells and expression of mRNA for Gob-5 were attenuated in the absence of IL-17R signalling. CONCLUSIONS Although IL-17A and Th17 cells stimulate cytokine production by structural cells of the airways, and Th17 cells are induced in our model of mild chronic asthma, signalling via IL-17R did not contribute significantly to the development of airway inflammation and most changes of remodelling in this model. However, in mild asthma, IL-17A appears to have a role in the goblet cell response in the airways.
Collapse
Affiliation(s)
- Cristan Herbert
- Inflammation and Infection Research, Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| | | | | |
Collapse
|
24
|
Mogie G, Shanks K, Nkyimbeng-Takwi EH, Smith E, Davila E, Lipsky MM, DeTolla LJ, Keegan AD, Chapoval SP. Neuroimmune semaphorin 4A as a drug and drug target for asthma. Int Immunopharmacol 2013; 17:568-75. [PMID: 23994348 DOI: 10.1016/j.intimp.2013.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/23/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Neuroimmune semaphorin 4A (Sema4A) has been shown to play an important costimulatory role in T cell activation and regulation of Th1-mediated diseases such as multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), and experimental autoimmune myocarditis (EAM). Sema4A has three functional receptors, Tim-2 expressed on CD4+ T cells, Th2 cells in particular, and Plexin B1 and D1 predominantly expressed on epithelial and endothelial cells, correspondingly. We recently showed that Sema4A has a complex expression pattern in lung tissue in a mouse model of asthma. We and others have shown that corresponding Plexin expression can be found on immune cells as well. Moreover, we demonstrated that Sema4A-deficient mice displayed significantly higher lung local and systemic allergic responses pointing to its critical regulatory role in the disease. To determine the utility of Sema4A as a novel immunotherapeutic, we introduced recombinant Sema4A protein to the allergen-sensitized WT and Sema4A(-/-) mice before allergen challenge. We observed significant reductions in the allergic inflammatory lung response in Sema4A-treated mice as judged by tissue inflammation including eosinophilia and mucus production. Furthermore, we demonstrated that in vivo administration of anti-Tim2 Ab led to a substantial upregulation of allergic inflammation in WT mouse lungs. These data highlight the potential to develop Sema4A as a new therapeutic for allergic airway disease.
Collapse
Affiliation(s)
- G Mogie
- Center for Vascular and Inflammatory Diseases, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Interleukin-33 drives activation of alveolar macrophages and airway inflammation in a mouse model of acute exacerbation of chronic asthma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:250938. [PMID: 23936781 PMCID: PMC3722780 DOI: 10.1155/2013/250938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
Abstract
We investigated the role of interleukin-33 (IL-33) in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM) were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.
Collapse
|
26
|
Mizutani N, Nabe T, Yoshino S. Interleukin-33 and alveolar macrophages contribute to the mechanisms underlying the exacerbation of IgE-mediated airway inflammation and remodelling in mice. Immunology 2013; 139:205-18. [PMID: 23323935 DOI: 10.1111/imm.12071] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 02/07/2023] Open
Abstract
Allergen-specific IgE has long been regarded as a major molecular component of allergic asthma. Additionally, there is increasing evidence of the important roles of interleukin-33 (IL-33) in the disease. Here, we show that IL-33 and alveolar macrophages play essential roles in the exacerbation of IgE-mediated airway inflammation and remodelling. BALB/c mice passively sensitized with ovalbumin (OVA)-specific IgE monoclonal antibody (mAb) were challenged with OVA seven times intratracheally. The seventh challenge exacerbated airway inflammation and remodelling compared with the fourth challenge; furthermore, markedly increased expression of IL-33 in the lungs was observed at the fourth and seventh challenges. When anti-IL-33 or anti-ST2 antibody was administered during the fourth to seventh challenge, airway inflammation and remodelling were significantly inhibited at the seventh challenge. Because increases of IL-33(+) and ST2(+) alveolar macrophages and ST2(+) CD4(+) T cells in the lungs were observed at the fourth challenge, the roles of macrophages and CD4(+) cells were investigated. Depletion of macrophages by 2-chloroadenosine during the fourth to seventh challenge suppressed airway inflammation and remodelling, and IL-33 production in the lung at the seventh challenge; additionally, anti-CD4 mAb inhibited airway inflammation, but not airway remodelling and IL-33 production. Meanwhile, treatment with 2-chloroadenosine or anti-CD4 mAb decreased IL-33-induced airway inflammation in normal mice; airway remodelling was repressed only by 2-chloroadenosine. These results illustrate that macrophage-derived IL-33 contributes to the exacerbation of IgE-mediated airway inflammation by mechanisms associated with macrophages and CD4(+) cells, and airway remodelling through the activation of macrophages.
Collapse
Affiliation(s)
- Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan.
| | | | | |
Collapse
|
27
|
Brandenberger C, Rowley NL, Jackson-Humbles DN, Zhang Q, Bramble LA, Lewandowski RP, Wagner JG, Chen W, Kaplan BL, Kaminski NE, Baker GL, Worden RM, Harkema JR. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Part Fibre Toxicol 2013; 10:26. [PMID: 23815813 PMCID: PMC3729411 DOI: 10.1186/1743-8977-10-26] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/13/2013] [Indexed: 12/28/2022] Open
Abstract
Background With the increase in production and use of engineered nanoparticles (NP; ≤ 100 nm), safety concerns have risen about the potential health effects of occupational or environmental NP exposure. Results of animal toxicology studies suggest that inhalation of NP may cause pulmonary injury with subsequent acute or chronic inflammation. People with chronic respiratory diseases like asthma or allergic rhinitis may be even more susceptible to toxic effects of inhaled NP. Few studies, however, have investigated adverse effects of inhaled NP that may enhance the development of allergic airway disease. Methods We investigated the potential of polyethylene glycol coated amorphous silica NP (SNP; 90 nm diameter) to promote allergic airway disease when co-exposed during sensitization with an allergen. BALB/c mice were sensitized by intranasal instillation with 0.02% ovalbumin (OVA; allergen) or saline (control), and co-exposed to 0, 10, 100, or 400 μg of SNP. OVA-sensitized mice were then challenged intranasally with 0.5% OVA 14 and 15 days after sensitization, and all animals were sacrificed a day after the last OVA challenge. Blood and bronchoalveolar lavage fluid (BALF) were collected, and pulmonary tissue was processed for histopathology and biochemical and molecular analyses. Results Co-exposure to SNP during OVA sensitization caused a dose-dependent enhancement of allergic airway disease upon challenge with OVA alone. This adjuvant-like effect was manifested by significantly greater OVA-specific serum IgE, airway eosinophil infiltration, mucous cell metaplasia, and Th2 and Th17 cytokine gene and protein expression, as compared to mice that were sensitized to OVA without SNP. In saline controls, SNP exposure did cause a moderate increase in airway neutrophils at the highest doses. Conclusions These results suggest that airway exposure to engineered SNP could enhance allergen sensitization and foster greater manifestation of allergic airway disease upon secondary allergen exposures. Whereas SNP caused innate immune responses at high doses in non-allergic mice, the adjuvant effects of SNP were found at lower doses in allergic mice and were Th2/Th17 related. In conclusion, these findings in mice suggest that individuals exposed to SNP might be more prone to manifest allergic airway disease, due to adjuvant-like properties of SNP.
Collapse
|
28
|
Collison A, Siegle JS, Hansbro NG, Kwok CT, Herbert C, Mattes J, Hitchins M, Foster PS, Kumar RK. Epigenetic changes associated with disease progression in a mouse model of childhood allergic asthma. Dis Model Mech 2013; 6:993-1000. [PMID: 23611895 PMCID: PMC3701218 DOI: 10.1242/dmm.011247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Development of asthma in childhood is linked to viral infections of the lower respiratory tract in early life, with subsequent chronic exposure to allergens. Progression to persistent asthma is associated with a Th2-biased immunological response and structural remodelling of the airways. The underlying mechanisms are unclear, but could involve epigenetic changes. To investigate this, we employed a recently developed mouse model in which self-limited neonatal infection with a pneumovirus, followed by sensitisation to ovalbumin via the respiratory tract and low-level chronic challenge with aerosolised antigen, leads to development of an asthmatic phenotype. We assessed expression of microRNA by cells in the proximal airways, comparing changes over the period of disease progression, and used target prediction databases to identify genes likely to be up- or downregulated as a consequence of altered regulation of microRNA. In parallel, we assessed DNA methylation in pulmonary CD4(+) T cells. We found that a limited number of microRNAs exhibited marked up- or downregulation following early-life infection and sensitisation, for many of which the levels of expression were further changed following chronic challenge with the sensitizing antigen. Targets of these microRNAs included genes involved in immune or inflammatory responses (e.g. Gata3, Kitl) and in tissue remodelling (e.g. Igf1, Tgfbr1), as well as genes for various transcription factors and signalling proteins. In pulmonary CD4(+) T cells, there was significant demethylation at promoter sites for interleukin-4 and interferon-γ, the latter increasing following chronic challenge. We conclude that, in this model, progression to an asthmatic phenotype is linked to epigenetic regulation of genes associated with inflammation and structural remodelling, and with T-cell commitment to a Th2 immunological response. Epigenetic changes associated with this pattern of gene activation might play a role in the development of childhood asthma.
Collapse
Affiliation(s)
- Adam Collison
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Herbert C, Siegle JS, Shadie AM, Nikolaysen S, Garthwaite L, Hansbro NG, Foster PS, Kumar RK. Development of asthmatic inflammation in mice following early-life exposure to ambient environmental particulates and chronic allergen challenge. Dis Model Mech 2012; 6:479-88. [PMID: 23223614 PMCID: PMC3597029 DOI: 10.1242/dmm.010728] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Childhood exposure to environmental particulates increases the risk of development of asthma. The underlying mechanisms might include oxidant injury to airway epithelial cells (AEC). We investigated the ability of ambient environmental particulates to contribute to sensitization via the airways, and thus to the pathogenesis of childhood asthma. To do so, we devised a novel model in which weanling BALB/c mice were exposed to both ambient particulate pollutants and ovalbumin for sensitization via the respiratory tract, followed by chronic inhalational challenge with a low mass concentration of the antigen. We also examined whether these particulates caused oxidant injury and activation of AEC in vitro. Furthermore, we assessed the potential benefit of minimizing oxidative stress to AEC through the period of sensitization and challenge by dietary intervention. We found that characteristic features of asthmatic inflammation developed only in animals that received particulates at the same time as respiratory sensitization, and were then chronically challenged with allergen. However, these animals did not develop airway hyper-responsiveness. Ambient particulates induced epithelial injury in vitro, with evidence of oxidative stress and production of both pro-inflammatory cytokines and Th2-promoting cytokines such as IL-33. Treatment of AEC with an antioxidant in vitro inhibited the pro-inflammatory cytokine response to these particulates. Ambient particulates also induced pro-inflammatory cytokine expression following administration to weanling mice. However, early-life dietary supplementation with antioxidants did not prevent the development of an asthmatic inflammatory response in animals that were exposed to particulates, sensitized and challenged. We conclude that injury to airway epithelium by ambient environmental particulates in early life is capable of promoting the development of an asthmatic inflammatory response in sensitized and antigen-challenged mice. These findings are likely to be relevant to the induction of childhood asthma.
Collapse
Affiliation(s)
- Cristan Herbert
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Defective aeroallergen surveillance by airway mucosal dendritic cells as a determinant of risk for persistent airways hyper-responsiveness in experimental asthma. Mucosal Immunol 2012; 5:332-41. [PMID: 22354321 DOI: 10.1038/mi.2012.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of atopic asthma is development of chronic airways hyper-responsiveness (AHR) that persists in the face of ongoing exposure to perennial aeroallergens. We investigated underlying mechanisms in sensitized rats focusing on a strain expressing the high-allergen-responder phenotype characteristic of human atopic asthmatics, and find that their high susceptibility to aeroallergen-induced persistent AHR is associated with deficiencies in the immunoregulatory and mucosal trafficking properties of inducible T-regulatory cells (iTregs). Counterintuitively, AHR susceptibility was inversely related to aeroallergen exposure level, high exposures conferring protection. We demonstrate that underlying this AHR-susceptible phenotype is reduced capacity of airway mucosal dendritic cells (AMDCs) for allergen sampling in vivo; this defect is microenvironmentally acquired, as allergen uptake by these cells in vitro is normal. Moreover, intranasal transfer of in vitro aeroallergen-loaded AMDC from naïve animals into AHR-susceptible animals during prolonged aerosol challenge markedly boosts subsequent accumulation of iTregs in the airway mucosa and rapidly resolves their chronic AHR, suggesting that compromised antigen surveillance by AMDC resulting in defective functional programming of iTreg may be causally related to AHR susceptibility.
Collapse
|
31
|
Thaikoottathil JV, Martin RJ, Di PY, Minor M, Case S, Zhang B, Zhang G, Huang H, Chu HW. SPLUNC1 deficiency enhances airway eosinophilic inflammation in mice. Am J Respir Cell Mol Biol 2012; 47:253-60. [PMID: 22499853 DOI: 10.1165/rcmb.2012-0064oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Short palate, lung and nasal epithelium clone 1 (SPLUNC1) is enriched in normal airway lining fluid, but is significantly reduced in airway epithelium exposed to a Th2 cytokine milieu. The role of SPLUNC1 in modulating airway allergic inflammation (e.g., eosinophils) remains unknown. We used SPLUNC1 knockout (KO) and littermate wild-type (C57BL/6 background) mice and recombinant SPLUNC1 protein to determine the impact of SPLUNC1 on airway allergic/eosinophilic inflammation, and to investigate the underlying mechanisms. An acute ovalbumin (OVA) sensitization and challenge protocol was used to induce murine airway allergic inflammation (e.g., eosinophils, eotaxin-2, and Th2 cytokines). Our results showed that SPLUNC1 in the bronchoalveolar lavage fluid of OVA-challenged wild-type mice was significantly reduced (P < 0.05), which was negatively correlated with levels of lung eosinophilic inflammation. Moreover, SPLUNC1 KO mice demonstrated significantly higher numbers of eosinophils in the lung after OVA challenges than did wild-type mice. Alveolar macrophages isolated from OVA-challenged SPLUNC1 KO versus wild-type mice had higher concentrations of baseline eotaxin-2 that was amplified by LPS (a known risk factor for exacerbating asthma). Human recombinant SPLUNC1 protein was applied to alveolar macrophages to study the regulation of eotaxin-2 in the context of Th2 cytokine and LPS stimulation. Recombinant SPLUNC1 protein attenuated LPS-induced eotaxin-2 production in Th2 cytokine-pretreated murine macrophages. These findings demonstrate that SPLUNC1 inhibits airway eosinophilic inflammation in allergic mice, in part by reducing eotaxin-2 production in alveolar macrophages.
Collapse
Affiliation(s)
- Jyoti V Thaikoottathil
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bang BR, Chun E, Shim EJ, Lee HS, Lee SY, Cho SH, Min KU, Kim YY, Park HW. Alveolar macrophages modulate allergic inflammation in a murine model of asthma. Exp Mol Med 2011; 43:275-80. [PMID: 21415590 DOI: 10.3858/emm.2011.43.5.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The role of alveolar macrophages (AMs) in the pathogenesis of asthma is still unknown. The aim of the present study was to investigate the effects of AM in the murine model of asthma. AMs were selectively depleted by liposomes containing clodronate just before allergen challenges, and changes in inflammatory cells and cytokine concentrations in bronchoalveolar lavage (BAL) fluid were measured. AMs were then adoptively transferred to AM-depleted sensitized mice and changes were measured. Phenotypic changes in AMs were evaluated after in vitro allergen stimulation. AM-depletion after sensitization significantly increased the number of eosinophils and lymphocytes and the concentrations of IL-4, IL-5 and GM-CSF in BAL fluid. These changes were significantly ameliorated only by adoptive transfer of unsensitized AMs, not by sensitized AMs. In addition, in vitro allergen stimulation of AMs resulted in their gaining the ability to produce inflammatory cytokines, such as IL-1β, IL-6 and TNF-α, and losing the ability to suppress GM-CSF concentrations in BAL fluid. These findings suggested that AMs worked probably through GM-CSF-dependent mechanisms, although further confirmatory experiments are needed. Our results indicate that the role of AMs in the context of airway inflammation should be re-examined.
Collapse
Affiliation(s)
- Bo Ram Bang
- Department of Internal Medicine, College of Medicine, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Al Heialy S, McGovern TK, Martin JG. Insights into asthmatic airway remodelling through murine models. Respirology 2011; 16:589-97. [PMID: 21435099 DOI: 10.1111/j.1440-1843.2011.01974.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Asthma is a chronic disorder of the airways associated in many instances with structural changes of the airways, termed airway remodelling. Irritant and allergen-induced murine models have been used to further understand the mechanisms of airway remodelling. The infiltration of the airways by inflammatory cells, such as T lymphocytes, mast cells, eosinophils, neutrophils and macrophages after repeated allergen challenges may be important effectors in the initiation and perpetuation of airway remodelling through the release of inflammatory mediators and growth factors. Interleukins-4 and -13 have been widely studied in experimental models, and have been shown to play a significant role in airway remodelling. Recently, a role for Th17 cells has been established. Other mediators involved in this process are ligands of the epidermal growth factor receptor, matrix metalloproteases and cysteinyl leukotrienes. A better understanding of the mechanisms leading to airway remodelling in allergic diseases may lead to the identification of novel therapeutic strategies but validation in human subjects is required for potential targets.
Collapse
Affiliation(s)
- Saba Al Heialy
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
34
|
Siegle JS, Hansbro N, Dong C, Angkasekwinai P, Foster PS, Kumar RK. Blocking induction of T helper type 2 responses prevents development of disease in a model of childhood asthma. Clin Exp Immunol 2011; 165:19-28. [PMID: 21501148 DOI: 10.1111/j.1365-2249.2011.04392.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Early-life respiratory viral infections are linked to subsequent development of allergic asthma in children. We assessed the underlying immunological mechanisms in a novel model of the induction phase of childhood asthma. BALB/c mice were infected neonatally with pneumonia virus of mice, then sensitized intranasally with ovalbumin following recovery. Animals were challenged with low levels of aerosolized ovalbumin for 4 weeks to induce changes of chronic asthma, then received a single moderate-level challenge to elicit mild acute allergic inflammation. To inhibit the initial induction of a T helper type 2 (Th2) response, we administered neutralizing antibodies against interleukin (IL)-4 or IL-25, then assessed development of airway inflammation and remodelling. Anti-IL-4 administered during chronic challenge prevented development of chronic and acute allergic inflammation, as well as goblet cell hyperplasia/metaplasia, but features of remodelling such as subepithelial fibrosis and epithelial hypertrophy were unaffected. In contrast, anti-IL-25 had limited effects on the airway inflammatory response but prevented key changes of remodelling, although it had no effect on goblet cells. Both antibodies suppressed development of a Th2 response, while anti-IL-25 also promoted a Th17 response. In further experiments, anti-IL-25 was administered in early life alone, and again had limited effects on airway inflammation, but prevented development of airway wall remodelling. We conclude that in this murine model of childhood asthma, administration of anti-IL-4 or anti-IL-25 prevents development of some key features of asthma, suggesting that suppression of development of a Th2 response during the neonatal period or later in childhood could be effective for primary prevention.
Collapse
Affiliation(s)
- J S Siegle
- Inflammation and Infection Research Centre, University of New South Wales, Sydney
| | | | | | | | | | | |
Collapse
|