1
|
Clarke SE, Fuller KA, Erber WN. Chromosomal defects in multiple myeloma. Blood Rev 2024; 64:101168. [PMID: 38212176 DOI: 10.1016/j.blre.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Multiple myeloma is a plasma cell neoplasm driven by primary (e.g. hyperdiploidy; IGH translocations) and secondary (e.g. 1q21 gains/amplifications; del(17p); MYC translocations) chromosomal events. These are important to detect as they influence prognosis, therapeutic response and disease survival. Currently, cytogenetic testing is most commonly performed by interphase fluorescence in situ hybridisation (FISH) on aspirated bone marrow samples. A number of variations to FISH methodology are available, including prior plasma cell enrichment and incorporation of immunophenotypic plasma cell identification. Other molecular methods are increasingly being utilised to provide a genome-wide view at high resolution (e.g. single nucleotide polymorphism (SNP) microarray analysis) and these can detect abnormalities in most cases. Despite their wide application at diagnostic assessment, both FISH and SNP-array have relatively low sensitivity, limiting their use for identification of prognostically significant low-level sub-clones or for disease monitoring. Next-generation sequencing is increasingly being used to detect mutations and new FISH techniques such as by flow cytometry are in development and may address some of the current test limitations. Here we review the primary and secondary cytogenetic aberrations in myeloma and discuss the range of techniques available for their assessment.
Collapse
Affiliation(s)
- Sarah E Clarke
- School of Biomedical Sciences, The University of Western Australia (M504), Crawley, WA 6009, Australia; Department of Haematology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, WA 6150, Australia.
| | - Kathryn A Fuller
- School of Biomedical Sciences, The University of Western Australia (M504), Crawley, WA 6009, Australia.
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia (M504), Crawley, WA 6009, Australia; PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, WA 6000, Australia.
| |
Collapse
|
2
|
Stanley J, Hui H, Erber W, Clynick B, Fuller K. Analysis of human chromosomes by imaging flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:541-553. [PMID: 34033226 DOI: 10.1002/cyto.b.22023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/18/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022]
Abstract
Chromosomal analysis is traditionally performed by karyotyping on metaphase spreads, or by fluorescent in situ hybridization (FISH) on interphase cells or metaphase spreads. Flow cytometry was introduced as a new method to analyze chromosomes number (ploidy) and structure (telomere length) in the 1970s with data interpretation largely based on fluorescence intensity. This technology has had little uptake for human cytogenetic applications primarily due to analytical challenges. The introduction of imaging flow cytometry, with the addition of digital images to standard multi-parametric flow cytometry quantitative tools, has added a new dimension. The ability to visualize the chromosomes and FISH signals overcomes the inherent difficulties when the data is restricted to fluorescence intensity. This field is now moving forward with methods being developed to assess chromosome number and structure in whole cells (normal and malignant) in suspension. A recent advance has been the inclusion of immunophenotyping such that antigen expression can be used to identify specific cells of interest for specific chromosomes and their abnormalities. This capability has been illustrated in blood cancers, such as chronic lymphocytic leukemia and plasma cell myeloma. The high sensitivity and specificity achievable highlights the potential imaging flow cytometry has for cytogenomic applications (i.e., diagnosis and disease monitoring). This review introduces and describes the development, current status, and applications of imaging flow cytometry for chromosomal analysis of human chromosomes.
Collapse
Affiliation(s)
- Jason Stanley
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Henry Hui
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Wendy Erber
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Britt Clynick
- Institute for Respiratory Health, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Kathy Fuller
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
3
|
Hui HY, Clarke KM, Fuller KA, Stanley J, Chuah HH, Ng TF, Cheah C, McQuillan A, Erber WN. “Immuno‐flowFISH” for the Assessment of Cytogenetic Abnormalities in Chronic Lymphocytic Leukemia. Cytometry A 2019; 95:521-533. [DOI: 10.1002/cyto.a.23769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Henry Y.L. Hui
- Translational Cancer Pathology LaboratorySchool of Biomedical Sciences, The University of Western Australia Crawley Western Australia Australia
| | - Kathryn M. Clarke
- Haemato‐Oncology Diagnostic Service, Department of HaematologyAddenbrooke's Hospital, Cambridge University Hospital, NHS Foundation Trust Cambridge UK
| | - Kathryn A. Fuller
- Translational Cancer Pathology LaboratorySchool of Biomedical Sciences, The University of Western Australia Crawley Western Australia Australia
- PathWest Laboratory Medicine Nedlands Western Australia Australia
| | - Jason Stanley
- Translational Cancer Pathology LaboratorySchool of Biomedical Sciences, The University of Western Australia Crawley Western Australia Australia
| | - Hun H. Chuah
- Department of HaematologyRoyal Perth Hospital Perth Western Australia Australia
| | - Teng Fong Ng
- Department of HaematologyRoyal Perth Hospital Perth Western Australia Australia
| | - Chan Cheah
- Department of HaematologySir Charles Gairdner Hospital Nedlands Western Australia Australia
- Department of HaematologyHollywood Private Hospital Nedlands Western Australia Australia
| | - Andrew McQuillan
- Department of HaematologyHollywood Private Hospital Nedlands Western Australia Australia
| | - Wendy N. Erber
- Translational Cancer Pathology LaboratorySchool of Biomedical Sciences, The University of Western Australia Crawley Western Australia Australia
- PathWest Laboratory Medicine Nedlands Western Australia Australia
| |
Collapse
|
4
|
Hui H, Fuller KA, Chuah H, Liang J, Sidiqi H, Radeski D, Erber WN. Imaging flow cytometry to assess chromosomal abnormalities in chronic lymphocytic leukaemia. Methods 2018; 134-135:32-40. [DOI: 10.1016/j.ymeth.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
|
5
|
Fuller KA, Bennett S, Hui H, Chakera A, Erber WN. Development of a robust immuno-S-FISH protocol using imaging flow cytometry. Cytometry A 2016; 89:720-30. [DOI: 10.1002/cyto.a.22852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Kathryn A. Fuller
- Translational Cancer Pathology Laboratory, School of Pathology and Laboratory Medicine; The University of Western Australia; Crawley Australia
| | - Sophia Bennett
- Translational Renal Research Group; Harry Perkins Institute of Medical Research; Nedlands Australia
| | - Henry Hui
- Translational Cancer Pathology Laboratory, School of Pathology and Laboratory Medicine; The University of Western Australia; Crawley Australia
| | - Aron Chakera
- Translational Renal Research Group; Harry Perkins Institute of Medical Research; Nedlands Australia
| | - Wendy N. Erber
- Translational Cancer Pathology Laboratory, School of Pathology and Laboratory Medicine; The University of Western Australia; Crawley Australia
- PathWest Laboratory Medicine; Nedlands Australia
| |
Collapse
|
6
|
Lee C, Roberts SE, Gladfelter AS. Quantitative spatial analysis of transcripts in multinucleate cells using single-molecule FISH. Methods 2015; 98:124-133. [PMID: 26690072 DOI: 10.1016/j.ymeth.2015.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
mRNA positioning in the cell is important for diverse cellular functions and proper development of multicellular organisms. Single-molecule RNA FISH (smFISH) enables quantitative investigation of mRNA localization and abundance at the level of individual molecules in the context of cellular features. Details about spatial mRNA patterning at various times, in different genetic backgrounds, at different developmental stages, and under varied environmental conditions provide invaluable insights into the mechanisms and functions of spatial regulation. Here, we describe detailed methods for performing smFISH along with immunofluorescence for two large, multinucleate cell types: the fungus Ashbya gossypii and cultured mouse myotubes. We also put forward a semi-automated image processing tool that systematically detects mRNAs from smFISH data and statistically analyzes the spatial pattern of mRNAs using a customized MATLAB code. These protocols and image analysis tools can be adapted to a wide variety of transcripts and cell types for systematically and quantitatively analyzing mRNA distribution in three-dimensional space.
Collapse
Affiliation(s)
- ChangHwan Lee
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha E Roberts
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
7
|
Sloan C, Xiong QB, Crivaro A, Steinman S, Bagg A. Multifocal mantle cell lymphoma in situ in the setting of a composite lymphoma. Am J Clin Pathol 2015; 143:274-82; quiz 307. [PMID: 25596254 DOI: 10.1309/ajcp06vikfmtrcxd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Mantle cell lymphoma in situ (MCLIS) consists of immunophenotypically defined but histologically inapparent neoplastic cells restricted to narrow mantle zones, without expansion or invasion beyond the mantle zone. We report a unique case of MCLIS associated with a much more manifest nodal marginal zone lymphoma (MZL) in an inguinal lymph node, porta hepatis lymph node, and bone marrow. METHODS Biopsies from all three locations were evaluated using standard H&E-stained sections, immunohistochemistry, flow cytometry, metaphase cytogenetics, and/or fluorescence in situ hybridization (FISH). RESULTS This case is unique for three reasons. First, the histologically covert mantle cell lymphoma was multifocal, detected in all three locations using one or more of flow cytometry, immunohistochemistry, cytogenetics, and FISH. Second, the MCLIS was always accompanied by a more histologically dominant MZL. Third, where evaluable, it did not grow in an appreciable mantle zone distribution, presumably due to destruction of the normal nodal architecture by the neoplastic MZL cells and the resulting absence of recognizable follicles and mantle zones. CONCLUSIONS This unique case provides new insight into the pathogenesis of MCLIS.
Collapse
Affiliation(s)
- Caroline Sloan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
| | - Qun-Bin Xiong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
| | - Anne Crivaro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
| | - Sharon Steinman
- St Luke’s Hospital at St Luke’s University Health Network, Allentown, PA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
| |
Collapse
|
8
|
Krishnan S, Sabai K, Chuah C, Tan SY. Bilineal T lymphoblastic and myeloid blast transformation in chronic myeloid leukemia with TP53 mutation-an uncommon presentation in adults. ACTA ACUST UNITED AC 2014; 21:e147-50. [PMID: 24523612 DOI: 10.3747/co.21.1660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bilineal blast transformation of myeloid and T lymphoid type is a rare event in chronic myeloid leukemia. Here, we report a case in which an adult presented with high white cell counts and lymphadenopathy. Bone marrow studies confirmed the presence of 9 and 22 chromosomal translocation, and a diagnosis of chronic myeloid leukemia in chronic phase was made. Examination of a lymph node showed both myeloid and T lymphoblastoid blast crisis. Molecular studies demonstrated the presence of BCR-ABL fusion transcripts in both the myeloid and the T lymphoblastic component, indicating that the myeloid and T lymphoid blast crisis components shared common progenitors. TP53 deletion was demonstrated by fluorescence in situ hybridization.
Collapse
Affiliation(s)
- S Krishnan
- Department of Haematology, Singapore General Hospital, Singapore. ; Duke-NUS Graduate Medical School, Singapore
| | - K Sabai
- Singhealth Tissue Repository, Singapore Health Services, Singapore
| | - C Chuah
- Department of Haematology, Singapore General Hospital, Singapore. ; Duke-NUS Graduate Medical School, Singapore
| | - S Y Tan
- Department of Haematology, Singapore General Hospital, Singapore
| |
Collapse
|
9
|
Heel K, Tabone T, Röhrig KJ, Maslen PG, Meehan K, Grimwade LF, Erber WN. Developments in the immunophenotypic analysis of haematological malignancies. Blood Rev 2013; 27:193-207. [PMID: 23845589 DOI: 10.1016/j.blre.2013.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunophenotyping is the method by which antibodies are used to detect cellular antigens in clinical samples. Although the major role is in the diagnosis and classification of haematological malignancies, applications have expanded over the past decade. Immunophenotyping is now used extensively for disease staging and monitoring, to detect surrogate markers of genetic aberrations, to identify potential immuno-therapeutic targets and to aid prognostic prediction. This expansion in applications has resulted from developments in antibodies, methodology, automation and data handling. In this review we describe recent advances in both the technology and applications for the analysis of haematological malignancies. We highlight the importance of the expanding repertoire of testing capability for diagnostic, prognostic and therapeutic applications. The impact and significance of immunophenotyping in the assessment of haematological neoplasms are evident.
Collapse
Affiliation(s)
- Kathy Heel
- Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Iourov IY, Vorsanova SG, Yurov YB. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 2012; 13:477-88. [PMID: 23449087 PMCID: PMC3426782 DOI: 10.2174/138920212802510439] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/30/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022] Open
Abstract
Single cell genomics has made increasingly significant contributions to our understanding of the role that somatic genome variations play in human neuronal diversity and brain diseases. Studying intercellular genome and epigenome variations has provided new clues to the delineation of molecular mechanisms that regulate development, function and plasticity of the human central nervous system (CNS). It has been shown that changes of genomic content and epigenetic profiling at single cell level are involved in the pathogenesis of neuropsychiatric diseases (schizophrenia, mental retardation (intellectual/leaning disability), autism, Alzheimer's disease etc.). Additionally, several brain diseases were found to be associated with genome and chromosome instability (copy number variations, aneuploidy) variably affecting cell populations of the human CNS. The present review focuses on the latest advances of single cell genomics, which have led to a better understanding of molecular mechanisms of neuronal diversity and neuropsychiatric diseases, in the light of dynamically developing fields of systems biology and "omics".
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
- Institute of Pediatrics and Children Surgery, Minzdravsotsrazvitia, Moscow, Russia
| | - Svetlana G Vorsanova
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
- Institute of Pediatrics and Children Surgery, Minzdravsotsrazvitia, Moscow, Russia
- Center for Neurobiological Diagnosis of Genetic Psychiatric Disorders, Moscow City University of Psychology and Education, Russia
| | - Yuri B Yurov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
- Institute of Pediatrics and Children Surgery, Minzdravsotsrazvitia, Moscow, Russia
- Center for Neurobiological Diagnosis of Genetic Psychiatric Disorders, Moscow City University of Psychology and Education, Russia
| |
Collapse
|
11
|
Olsson L, Paulsson K, Bovée JVMG, Nord KH. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma. PLoS One 2011; 6:e24977. [PMID: 21949816 PMCID: PMC3176800 DOI: 10.1371/journal.pone.0024977] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/25/2011] [Indexed: 12/15/2022] Open
Abstract
Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.
Collapse
Affiliation(s)
- Linda Olsson
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Lund, Sweden
| | - Kajsa Paulsson
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Lund, Sweden
| | | | - Karolin H. Nord
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
12
|
ImmunoFISH on isolated nuclei from paraffin-embedded biopsy material. Methods Mol Biol 2010. [PMID: 20809323 DOI: 10.1007/978-1-60761-789-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The detection of genetic abnormalities in paraffin sections by fluorescence in situ hybridization (FISH) is widely used in clinical practice to detect amplification of the ERB2 gene in breast carcinoma and various chromosomal translocations in lymphomas and soft tissue tumors. However, interpretation of FISH signals in tissue sections may be difficult due to overlapping nuclei and nuclear truncation artifacts. Some of these shortcomings may be avoided by the use of isolated nuclear preparations. However, identification of cell populations may be difficult in detached cells removed from their histological context. We have described an optimized immunoFISH technique on isolated nuclear suspension, which combines the benefits of studying isolated cells derived from paraffin embedded tissues by FISH analysis with the ability to detect cell lineage and other markers by immunofluorescence.
Collapse
|
13
|
Roullet MR, Martinez D, Ma L, Fowler MH, McPhail ED, Judkins A, Arber DA, Bagg A. Coexisting follicular and mantle cell lymphoma with each having an in situ component: A novel, curious, and complex consultation case of coincidental, composite, colonizing lymphoma. Am J Clin Pathol 2010; 133:584-91. [PMID: 20231612 DOI: 10.1309/ajcp5rt4mrsdgksx] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
A diagnosis of composite lymphoma is typically prompted by the observation of morphologic discordance. We present a case of a spleen revealing histologic features of follicular lymphoma, without any indication of a second lymphoma. Immunohistochemical stains supported this diagnosis and showed the follicular lymphoma to be BCL2-. However, these studies revealed 2 additional unexpected findings: cyclin D1+ mantle zone cells surrounding neoplastic and reactive follicles (indicative of in situ mantle cell lymphoma) and BCL2-bright, histologically nonneoplastic follicles (indicative of in situ follicular lymphoma). ImmunoFISH and microdissection and polymerase chain reaction analysis documented the clonal nature of the cyclin D1+ mantle zones and illustrated clonal independence from the follicular lymphoma. This case illustrates an uncommon and unusual composite follicular and mantle cell lymphoma, with the follicular lymphoma accompanied by an in situ component, whereas the only manifestation of the mantle cell lymphoma was in situ.
Collapse
|
14
|
Mattsson G, Turner SH, Cordell J, Ferguson DJP, Schuh A, Grimwade LF, Bench AJ, Weinberg OK, Marafioti T, George TI, Arber DA, Erber WN, Mason DY. Can cytoplasmic nucleophosmin be detected by immunocytochemical staining of cell smears in acute myeloid leukemia? Haematologica 2009; 95:670-3. [PMID: 20015883 DOI: 10.3324/haematol.2009.011817] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in the C-terminal region of nucleophosmin in acute myeloid leukemia (AML) result in aberrant cytoplasmic nucleophosmin (cNPM) in leukemic blast cells which is detectable by immunocytochemistry in bone marrow trephine (BMT) biopsy sections. We tested whether cNPM is detectable by immunocytochemistry in air-dried smears of AML with nucleophosmin1 (NPM1) mutations. An immunoalkaline phosphatase method was developed using the OCI-AML3 cell line, known to have mutated NPM1, and assessed on blood and marrow smears of 60 AML cases. NPM was detectable in all blast cell nucleoli and cNPM in 21 of 31 of NPM1 mutated and 15 of 29 wild-type cases. Paired air-dried smears and BMT biopsies from the same case (mutated and wild-type) gave discrepancies in cNPM expression and there was no correlation in 10 of 22 cases. Due to the high false positive and negative rates for cNPM in cell smears, this method should not be used as a surrogate for NPM1 mutations in AML.
Collapse
Affiliation(s)
- Göran Mattsson
- 1Leukaemia Research Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Masir N, Campbell LJ, Goff LK, Jones M, Marafioti T, Cordell J, Clear AJ, Lister TA, Mason DY, Lee AM. BCL2 protein expression in follicular lymphomas with t(14;18) chromosomal translocations. Br J Haematol 2008; 144:716-25. [PMID: 19120369 DOI: 10.1111/j.1365-2141.2008.07528.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein overexpression in most follicular lymphomas. However the expression of BCL2 is not always homogeneous and may demonstrate a variable degree of heterogeneity. This study analysed BCL2 protein expression pattern in 33 cases of t(14;18)-positive follicular lymphomas using antibodies against two different epitopes (i.e. the widely used antibody BCL2/124 and an alternative antibody E17). 16/33 (49%) cases demonstrated strong BCL2 expression. In 10/33 (30%) cases, BCL2 expression was heterogeneous and in some of these, its loss appeared to be correlated with cell proliferation, as indicated by Ki67 expression. Double immunofluorescence labelling confirmed an inverse BCL2/Ki67 relationship, where in 24/28 (86%) cases cellular expression of BCL2 and Ki67 was mutually exclusive. In addition, seven BCL2 'pseudo-negative' cases were identified in which immunostaining was negative with antibody BCL2/124, but positive with antibody E17. Genomic DNA sequencing of these 'pseudo-negative' cases demonstrated eleven mutations in four cases and nine of these were missense mutations. It can be concluded that in follicular lymphomas, despite carrying the t(14;18) translocations, BCL2 protein expression may be heterogeneous and loss of BCL2 could be related to cell proliferation. Secondly, mutations in translocated BCL2 genes appear to be common and may cause BCL2 pseudo-negative immunostaining.
Collapse
Affiliation(s)
- Noraidah Masir
- Pathology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Jerónimo Forteza Vila
- Departamento de Patología, Hospital Clínico Universitario Complejo Hospitalario y Universitario de Santiago, Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Gisselsson D, Håkanson U, Stoller P, Marti D, Jin Y, Rosengren AH, Stewénius Y, Kahl F, Panagopoulos I. When the genome plays dice: circumvention of the spindle assembly checkpoint and near-random chromosome segregation in multipolar cancer cell mitoses. PLoS One 2008; 3:e1871. [PMID: 18392149 PMCID: PMC2289843 DOI: 10.1371/journal.pone.0001871] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/22/2008] [Indexed: 12/21/2022] Open
Abstract
Background Normal cell division is coordinated by a bipolar mitotic spindle, ensuring symmetrical segregation of chromosomes. Cancer cells, however, occasionally divide into three or more directions. Such multipolar mitoses have been proposed to generate genetic diversity and thereby contribute to clonal evolution. However, this notion has been little validated experimentally. Principal Findings Chromosome segregation and DNA content in daughter cells from multipolar mitoses were assessed by multiphoton cross sectioning and fluorescence in situ hybridization in cancer cells and non-neoplastic transformed cells. The DNA distribution resulting from multipolar cell division was found to be highly variable, with frequent nullisomies in the daughter cells. Time-lapse imaging of H2B/GFP-labelled multipolar mitoses revealed that the time from the initiation of metaphase to the beginning of anaphase was prolonged and that the metaphase plates often switched polarity several times before metaphase-anaphase transition. The multipolar metaphase-anaphase transition was accompanied by a normal reduction of cellular cyclin B levels, but typically occurred before completion of the normal separase activity cycle. Centromeric AURKB and MAD2 foci were observed frequently to remain on the centromeres of multipolar ana-telophase chromosomes, indicating that multipolar mitoses were able to circumvent the spindle assembly checkpoint with some sister chromatids remaining unseparated after anaphase. Accordingly, scoring the distribution of individual chromosomes in multipolar daughter nuclei revealed a high frequency of nondisjunction events, resulting in a near-binomial allotment of sister chromatids to the daughter cells. Conclusion The capability of multipolar mitoses to circumvent the spindle assembly checkpoint system typically results in a near-random distribution of chromosomes to daughter cells. Spindle multipolarity could thus be a highly efficient generator of genetically diverse minority clones in transformed cell populations.
Collapse
Affiliation(s)
- David Gisselsson
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|