1
|
van der Laan L, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics 2022; 14:1373-1388. [PMID: 36537268 DOI: 10.2217/epi-2022-0287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this review we discuss epigenetic disorders that result from aberrations in genes linked to epigenetic regulation. We describe current testing methods for the detection of copy number variants (CNVs) in Mendelian disorders, dosage sensitivity, reciprocal phenotypes and the challenges of test selection and overlapping clinical features in genetic diagnosis. We discuss aberrations of DNA methylation and propose a role for episignatures as a novel clinical testing method in CNV disorders. Finally, we postulate that episignature mapping in CNV disorders may provide novel insights into the molecular mechanisms of disease and unlock key findings of the genome-wide impact on disease gene networks.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Kathleen Rooney
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Tessa Ma Trooster
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Marcel Mam Mannens
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| |
Collapse
|
2
|
Cheung SW, Bi W. Novel applications of array comparative genomic hybridization in molecular diagnostics. Expert Rev Mol Diagn 2018; 18:531-542. [PMID: 29848116 DOI: 10.1080/14737159.2018.1479253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.
Collapse
Affiliation(s)
- Sau W Cheung
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Weimin Bi
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Baylor Genetics , Houston , TX , USA
| |
Collapse
|
3
|
Enhancer chip: detecting human copy number variations in regulatory elements. PLoS One 2012; 7:e52264. [PMID: 23284961 PMCID: PMC3527541 DOI: 10.1371/journal.pone.0052264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
Critical functional properties are embedded in the non-coding portion of the human genome. Recent successful studies have shown that variations in distant-acting gene enhancer sequences can contribute to disease. In fact, various disorders, such as thalassaemias, preaxial polydactyly or susceptibility to Hirschsprung’s disease, may be the result of rearrangements of enhancer elements. We have analyzed the distribution of enhancer loci in the genome and compared their localization to that of previously described copy-number variations (CNVs). These data suggest a negative selection of copy number variable enhancers. To identify CNVs covering enhancer elements, we have developed a simple and cost-effective test. Here we describe the gene selection, design strategy and experimental validation of a customized oligonucleotide Array-Based Comparative Genomic Hybridization (aCGH), designated Enhancer Chip. It has been designed to investigate CNVs, allowing the analysis of all the genome with a 300 Kb resolution and specific disease regions (telomeres, centromeres and selected disease loci) at a tenfold higher resolution. Moreover, this is the first aCGH able to test over 1,250 enhancers, in order to investigate their potential pathogenic role. Validation experiments have demonstrated that Enhancer Chip efficiently detects duplications and deletions covering enhancer loci, demonstrating that it is a powerful instrument to detect and characterize copy number variable enhancers.
Collapse
|
4
|
Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage-fusion-bridge for telomere stabilization. Hum Genet 2012; 131:1895-910. [PMID: 22890305 DOI: 10.1007/s00439-012-1216-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/01/2012] [Indexed: 12/19/2022]
Abstract
Constitutional deletions of distal 9q34 encompassing the EHMT1 (euchromatic histone methyltransferase 1) gene, or loss-of-function point mutations in EHMT1, are associated with the 9q34.3 microdeletion syndrome, also known as Kleefstra syndrome [MIM#610253]. We now report further evidence for genomic instability of the subtelomeric 9q34.3 region as evidenced by copy number gains of this genomic interval that include duplications, triplications, derivative chromosomes and complex rearrangements. Comparisons between the observed shared clinical features and molecular analyses in 20 subjects suggest that increased dosage of EHMT1 may be responsible for the neurodevelopmental impairment, speech delay, and autism spectrum disorders revealing the dosage sensitivity of yet another chromatin remodeling protein in human disease. Five patients had 9q34 genomic abnormalities resulting in complex deletion-duplication or duplication-triplication rearrangements; such complex triplications were also observed in six other subtelomeric intervals. Based on the specific structure of these complex genomic rearrangements (CGR) a DNA replication mechanism is proposed confirming recent findings in Caenorhabditis elegans telomere healing. The end-replication challenges of subtelomeric genomic intervals may make them particularly prone to rearrangements generated by errors in DNA replication.
Collapse
|
5
|
Simmons AD, Carvalho CMB, Lupski JR. What have studies of genomic disorders taught us about our genome? Methods Mol Biol 2012; 838:1-27. [PMID: 22228005 DOI: 10.1007/978-1-61779-507-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The elucidation of genomic disorders began with molecular technologies that enabled detection of genomic changes which were (a) smaller than those resolved by traditional cytogenetics (less than 5 Mb) and (b) larger than what could be determined by conventional gel electrophoresis. Methods such as pulsed field gel electrophoresis (PFGE) and fluorescent in situ hybridization (FISH) could resolve such changes but were limited to locus-specific studies. The study of genomic disorders has rapidly advanced with the development of array-based techniques. These enabled examination of the entire human genome at a higher level of resolution, thus allowing elucidation of the basis of many new disorders, mechanisms that result in genomic changes that can result in copy number variation (CNV), and most importantly, a deeper understanding of the characteristics, features, and plasticity of our genome. In this chapter, we focus on the structural and architectural features of the genome, which can potentially result in genomic instability, delineate how mechanisms, such as NAHR, NHEJ, and FoSTeS/MMBIR lead to disease-causing rearrangements, and briefly describe the relationship between the leading methods presently used in studying genomic disorders. We end with a discussion on our new understanding about our genome including: the contribution of new mutation CNV to disease, the abundance of mosaicism, the extent of subtelomeric rearrangements, the frequency of de novo rearrangements associated with sporadic birth defects, the occurrence of balanced and unbalanced translocations, the increasing discovery of insertional translocations, the exploration of complex rearrangements and exonic CNVs. In the postgenomic era, our understanding of the genome has advanced very rapidly as the level of technical resolution has become higher. This leads to a greater understanding of the effects of rearrangements present both in healthy subjects and individuals with clinically relevant phenotypes.
Collapse
|
6
|
College of American Pathologists/American College of Medical Genetics proficiency testing for constitutional cytogenomic microarray analysis. Genet Med 2012; 13:765-9. [PMID: 21633292 DOI: 10.1097/gim.0b013e31821d3165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate the feasibility of administering a newly established proficiency test offered through the College of American Pathologists and the American College of Medical Genetics for genomic copy number assessment by microarray analysis, and to determine the reproducibility and concordance among laboratory results from this test. METHODS Surveys were designed through the Cytogenetic Resource Committee of the two colleges to assess the ability of testing laboratories to process DNA samples provided and interpret results. Supplemental questions were asked with each Survey to determine laboratory practice trends. RESULTS Twelve DNA specimens, representing 2 pilot and 10 Survey challenges, were distributed to as many as 74 different laboratories, yielding 493 individual responses. The mean consensus for matching result interpretations was 95.7%. Responses to supplemental questions indicate that the number of laboratories offering this testing is increasing, methods for analysis and evaluation are becoming standardized, and array platforms used are increasing in probe density. CONCLUSION The College of American Pathologists/American College of Medical Genetics proficiency testing program for copy number assessment by cytogenomic microarray is a successful and efficient mechanism for assessing interlaboratory reproducibility. This will provide laboratories the opportunity to evaluate their performance and assure overall accuracy of patient results. The high level of concordance in laboratory responses across all testing platforms by multiple facilities highlights the robustness of this technology.
Collapse
|
7
|
Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, Harris SE, Goetsch MA, Simpson PM, Bick DP, Broeckel U, Pelech AN, Tweddell JS, Mitchell ME. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics 2012; 44:518-41. [PMID: 22318994 DOI: 10.1152/physiolgenomics.00013.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency "spectra" to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways.
Collapse
Affiliation(s)
- Aoy Tomita-Mitchell
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ozel AB, Srivannavit O, Rouillard JM, Gulari AE. Target concentration dependence of DNA melting temperature on oligonucleotide microarrays. Biotechnol Prog 2012; 28:556-66. [PMID: 22275183 DOI: 10.1002/btpr.1505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/08/2011] [Indexed: 01/12/2023]
Abstract
The design of microarrays is currently based on studies focusing on DNA hybridization reaction in bulk solution. However, the presence of a surface to which the probe strand is attached can make the solution-based approximations invalid, resulting in sub-optimum hybridization conditions. To determine the effect of surfaces on DNA duplex formation, the authors studied the dependence of DNA melting temperature (T(m)) on target concentration. An automated system was developed to capture the melting profiles of a 25-mer perfect-match probe-target pair initially hybridized at 23°C. Target concentrations ranged from 0.0165 to 15 nM with different probe amounts (0.03-0.82 pmol on a surface area of 10(18) Å(2)), a constant probe density (5 × 10(12) molecules/cm(2)) and spacer length (15 dT). The authors found that T(m) for duplexes anchored to a surface is lower than in-solution, and this difference increases with increasing target concentration. In a representative set, a target concentration increase from 0.5 to 15 nM with 0.82 pmol of probe on the surface resulted in a T(m) decrease of 6°C when compared with a 4°C increase in solution. At very low target concentrations, a multi-melting process was observed in low temperature domains of the curves. This was attributed to the presence of truncated or mismatch probes.
Collapse
Affiliation(s)
- Ayse Bilge Ozel
- Dept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
9
|
Tirado CA, Gotway G, Torgbe E, Iyer S, Dallaire S, Appleberry T, Suterwala M, Garcia R, Valdez F, Patel S, Koduru P. Recombinant chromosome 7 in a mosaic 45,X/47,XXX patient. Am J Med Genet A 2011; 158A:206-14. [PMID: 22106088 DOI: 10.1002/ajmg.a.34364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/02/2011] [Indexed: 11/12/2022]
Abstract
Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36.
Collapse
Affiliation(s)
- Carlos A Tirado
- Laboratory of Clinical Cytogenetics, Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
South ST, Brothman AR. Clinical laboratory implementation of cytogenomic microarrays. Cytogenet Genome Res 2011; 135:203-11. [PMID: 21934287 DOI: 10.1159/000331425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Examination of the whole genome for copy number alterations by microarray is now routinely done in many laboratories. The field of cytogenetics has evolved to adapt this technology, and the current phase of transition has resulted in the need for standardization in methodologies and interpretation of data. This review will outline some of the changes addressed in the field over the last several years and briefly discuss some of the trends in data processing, analysis and interpretation.
Collapse
Affiliation(s)
- S T South
- Department of Pediatrics, ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | |
Collapse
|
11
|
Guan Q, Wang X, Teng D, Yang Y, Tian F, Yin Q, Wang J. Construction of a Standard Reference Plasmid for Detecting GM Cottonseed Meal. Appl Biochem Biotechnol 2011; 165:24-34. [DOI: 10.1007/s12010-011-9230-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/18/2011] [Indexed: 11/24/2022]
|