Low-intensity blood flow restriction calf muscle training leads to similar functional and structural adaptations than conventional low-load strength training: A randomized controlled trial.
PLoS One 2020;
15:e0235377. [PMID:
32603351 PMCID:
PMC7326162 DOI:
10.1371/journal.pone.0235377]
[Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to investigate whether a six-week, twice weekly resistance training (4 sets at 30% 1-RM until failure) with practical blood flow restriction (BFR) using 7cm wide cuffs with a twist lock placed below the patella is superior to training without BFR (NoBFR) concerning muscle mass and strength gains in calf muscles. A two-group (BFR n = 12, mean age 27.33 (7.0) years, training experience 7.3 (7.0) years; NoBFR n = 9, mean age 28.9 (7.4) years, training experience 7.1 (6.6) years) randomized matched pair design based on initial 1-RM was used to assess the effects on structural and functional adaptations in healthy males (Perometer calf volume [CV], gastrocnemius muscle thickness using ultrasound [MT], 7-maximal hopping test for leg stiffness [LS], 1-RM smith machine calf raise [1-RM], and visual analogue scale as a measure of pain intensity [VAS]). The mean number of repetitions completed per training session across the intervention period was higher in the NoBFR group compared to the BFR group (70 (16) vs. 52 (9), p = 0.002). VAS measured during the first session increased similarly in both groups from first to fourth set (p<0.001). No group effects or time×group interactions were found for CV, MT, LS, and 1-RM. However, there were significant time effects for MT (BFR +0.07 cm; NoBFR +0.04; p = 0.008), and 1-RM (BFR +40 kg; NoBFR +34 kg; p<0.001). LS and CV remained unchanged through training. VAS in both groups were similar, and BFR and NoBFR were equally effective for increasing 1-RM and MT in trained males. However, BFR was more time efficient, due to lesser repetition per training session.
Collapse