Combination of midostaurin and ATRA exerts dose-dependent dual effects on acute myeloid leukemia cells with wild type FLT3.
BMC Cancer 2022;
22:749. [PMID:
35810308 PMCID:
PMC9270826 DOI:
10.1186/s12885-022-09828-2]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background
Midostaurin combined with chemotherapy is currently used to treat newly diagnosed acute myeloid leukemia (AML) patients with FMS-like tyrosine kinase 3 (FLT3)-mutations. However, midostaurin acts as an antagonist to some chemotherapeutic agents in leukemia cell lines without FLT3 mutations. All-trans retinoic acid (ATRA) induces apoptosis when used in combination with midostaurin in FLT3-mutated AML cells. This combination has been shown to be safe in AML patients. However, the effect of this combination has not been investigated in AML without FLT3 mutations.
Methods
Cell proliferation was assessed by a cell counting assay. Cell death was evaluated by cell viability and Annexin-V assays. Cell differentiation was assessed by CD11b expression profiling and morphological analysis. To explore the underlying mechanisms, we studied the role of caspase3/7, Lyn, Fgr, Hck, RAF, MEK, ERK, AKT, PU.1, CCAAT/enhancer binding protein β (C/EBPβ) and C/EBPε by Western blot analysis and immunoprecipitation assays. Antitumor activity was also confirmed in mouse xenograft models established with AML cells.
Results
In this study, 0.1 − 0.25 μM midostaurin (mido(L)) combined with ATRA induced differentiation while 0.25 − 0.5 μM midostaurin (mido(H)) combined with ATRA triggered apoptosis in some AML cell lines without FLT3-mutations. Midostaurin combined with ATRA (mido-ATRA) also exhibited antitumor activity in mouse xenograft models established with AML cells. Mechanistically, mido(H)-ATRA-induced apoptosis was dependent on caspase-3/7. Mido(L)-ATRA inhibited Akt activation which was associated with decreased activity of Lyn/Fgr/Hck, resulted in dephosphorylation of RAF S259, activated RAF/MEK/ERK, along with upregulating the protein levels of C/EBPβ, C/EBPε and PU.1. A MEK specific inhibitor was observed to suppress mido(L)-ATRA-induced increases in the protein levels of C/EBPs and PU.1 and mido(L)-ATRA-induced differentiation. Furthermore, inhibition of Akt activity promoted mido(L)-ATRA-induced downregulation of RAF S259 phosphorylation and mido(L)-ATRA-induced differentiation. Therefore, Lyn/Fgr/Hck-associated Akt inhibition activated RAF/MEK/ERK and controlled mido(L)-ATRA-induced differentiation by upregulation of C/EBPs and PU.1. Mido(L)-ATRA also promoted assembly of the signalosome, which may facilitate RAF activation.
Conclusions
Midostaurin combined with ATRA exerts antitumor activity against AML with wild-type FLT3 mutations in vitro and in vivo. These findings may provide novel therapeutic strategies for some AML patients without FLT3 mutations and imply a new target of midostaurin.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12885-022-09828-2.
Collapse