2
|
Chen Y, Chen W, Xiang X, Deng L, Qian J, Cui W, Chen H. Pollen-Inspired Shell-Core Aerosol Particles Capable of Brownian Motion for Pulmonary Vascularization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207744. [PMID: 36626720 DOI: 10.1002/adma.202207744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nebulization is the most widely used respiratory delivery technique with non-invasive properties. However, nebulized drugs often fail to function due to the excretion and immune clearance of the respiratory system. In this work, inspired by pollen in nature, novel shell-core aerosol particles (APs) capable of Brownian motion are constructed for respiratory delivery. Drugs-loaded poly(lactic-co-glycolic acid) nanoparticles are prepared by emulsification to form the inner core, and the membranes of macrophages are extracted to form the outer shell. The optimized size and the shell-core structure endow APs with Brownian motion and atomization stability, thus enabling the APs to reach the bronchi and alveoli deeply for effective deposition. Camouflaging the macrophage membranes equips the APs with immune evasion. In vitro experiments prove that deferoxamine (DFO)-loaded APs (DFO@APs) can promote the angiogenesis of human umbilical vein endothelial cells. A hyperoxia-induced bronchopulmonary dysplasia (BPD) model is constructed to validate the efficiency of DFO@APs. In BPD mice, DFO@APs can release DFO in the alveolar interstitium, thus promoting the reconstruction of microvasculature, ultimately inducing lung development for treating BPD. In conclusion, this study develops "pollen"-inspired shell-core aerosol particles capable of Brownian motion, which provides a novel idea and theoretical basis for respiratory administration.
Collapse
Affiliation(s)
- Yanru Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200082, P. R. China
| | - Wei Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Spine Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Xiaowen Xiang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200082, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jihong Qian
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200082, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
3
|
Impact of Sex on Proper Use of Inhaler Devices in Asthma and COPD: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14081565. [PMID: 36015191 PMCID: PMC9414749 DOI: 10.3390/pharmaceutics14081565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023] Open
Abstract
Despite females being more often affected by asthma than males and the prevalence of COPD rising in females, conflicting evidence exists as to whether sex may modulate the correct inhaler technique. The aim of this study was to assess the impact of sex on the proper use of inhaler devices in asthma and COPD. A pairwise meta-analysis was performed on studies enrolling adult males and females with asthma or COPD and reporting data of patients making at least one error by inhaler device type (DPI, MDI, and SMI). The data of 6,571 patients with asthma or COPD were extracted from 12 studies. A moderate quality of evidence (GRADE +++) indicated that sex may influence the correct use of inhaler device in both asthma and COPD. The critical error rate was higher in females with asthma (OR 1.31, 95%CI 1.14−1.50) and COPD (OR 1.80, 95%CI 1.22−2.67) using DPI vs. males (p < 0.01). In addition, the use of SMI in COPD was associated with a greater rate of critical errors in females vs. males (OR 5.36, 95%CI 1.48−19.32; p < 0.05). No significant difference resulted for MDI. In conclusion, choosing the right inhaler device in agreement with sex may optimize the pharmacological treatment of asthma and COPD.
Collapse
|
4
|
Ahmad A. Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma. Life (Basel) 2022; 12:life12040596. [PMID: 35455087 PMCID: PMC9032250 DOI: 10.3390/life12040596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 12/22/2022] Open
Abstract
With a high prevalence globally, asthma is a severe hazard to human health, as well as an economic and social burden. There are now novel therapies available for asthma with the use of nanotechnology. Recent developments in nanoscience and medicine have encouraged the creation of inhalable nanomedicines that can enhance the efficacy, patient compliance, and life quality for sufferers of asthma. Nanocarriers for asthma therapy, including liposomes, micelles, polymers, dendrimers, and inorganics, are presented in depth in this study as well as the current research status of these nanocarriers. Aerosolized nanomaterial-based drug transport systems are currently being developed, and some examples of these systems, as well as prospective future paths, are discussed. New research subjects include nano-modification of medicines and the development of innovative nano-drugs. Clinical experiments have proven that nanocarriers are both safe and effective. Before nanotherapy can be applied in clinical practice, several obstacles must be addressed. We look at some of the most recent research discoveries in the subject of nanotechnology and asthma therapy in this article.
Collapse
Affiliation(s)
- Aftab Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Clini E, Fabbri LM. Combined approach to define the clinical impact and decision making in asthmatics. Minerva Med 2021; 112:539-541. [PMID: 34814632 DOI: 10.23736/s0026-4806.21.07473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Enrico Clini
- Department of Medical and Surgical Sciences (SMECHIMAI), University of Modena and Reggio Emilia, Modena, Italy -
| | - Leonardo M Fabbri
- Department of Internal and Respiratory Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|