1
|
Yao Q, Gorevic P, Shen B, Gibson G. Genetically transitional disease: a new concept in genomic medicine. Trends Genet 2023; 39:98-108. [PMID: 36564319 DOI: 10.1016/j.tig.2022.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Traditional classification of genetic diseases as monogenic and polygenic has lagged far behind scientific progress. In this opinion article, we propose and define a new terminology, genetically transitional disease (GTD), referring to cases where a large-effect mutation is necessary, but not sufficient, to cause disease. This leads to a working disease nosology based on gradients of four types of genetic architecture: monogenic, polygenic, GTD, and mixed. We present four scenarios under which GTD may occur; namely, subsets of traditionally Mendelian disease, modifiable Tier 1 monogenic conditions, variable penetrance, and situations where a genetic mutational spectrum produces qualitatively divergent pathologies. The implications of the new nosology in precision medicine are discussed, in which therapeutic options may target the molecular cause or the disease phenotype.
Collapse
Affiliation(s)
- Qingping Yao
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA.
| | - Peter Gorevic
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Bo Shen
- Center for Inflammatory Bowel Diseases, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Greg Gibson
- Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Centorame A, Dumut DC, Youssef M, Ondra M, Kianicka I, Shah J, Paun RA, Ozdian T, Hanrahan JW, Gusev E, Petrof B, Hajduch M, Pislariu R, De Sanctis JB, Radzioch D. Treatment With LAU-7b Complements CFTR Modulator Therapy by Improving Lung Physiology and Normalizing Lipid Imbalance Associated With CF Lung Disease. Front Pharmacol 2022; 13:876842. [PMID: 35668939 PMCID: PMC9163687 DOI: 10.3389/fphar.2022.876842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasians, affecting more than 100,000 individuals worldwide. It is caused by pathogenic variants in the gene encoding CFTR, an anion channel at the plasma membrane of epithelial and other cells. Many CF pathogenic variants disrupt the biosynthesis and trafficking of CFTR or reduce its ion channel function. The most frequent mutation, loss of a phenylalanine at position 508 (F508del), leads to misfolding, retention in the endoplasmic reticulum, and premature degradation of the protein. The therapeutics available for treating CF lung disease include antibiotics, mucolytics, bronchodilators, physiotherapy, and most recently CFTR modulators. To date, no cure for this life shortening disease has been found. Treatment with the Triple combination drug therapy, TRIKAFTA®, is composed of three drugs: Elexacaftor (VX-445), Tezacaftor (VX-661) and Ivacaftor (VX-770). This therapy, benefits persons with CF, improving their weight, lung function, energy levels (as defined by reduced fatigue), and overall quality of life. We examined the effect of combining LAU-7b oral treatment and Triple therapy combination on lung function in a F508deltm1EUR mouse model that displays lung abnormalities relevant to human CF. We assessed lung function, lung histopathology, protein oxidation, lipid oxidation, and fatty acid and lipid profiles in F508deltm1EUR mice.
Collapse
Affiliation(s)
- Amanda Centorame
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mina Youssef
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juhi Shah
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Radu Alexandru Paun
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Tomas Ozdian
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Ekaterina Gusev
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Basil Petrof
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Danuta Radzioch
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Laurent Pharmaceuticals, Montreal, QC, Canada
| |
Collapse
|
3
|
Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. Drug Repurposing for Rare Diseases. Trends Pharmacol Sci 2021; 42:255-267. [PMID: 33563480 DOI: 10.1016/j.tips.2021.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Currently, there are about 7000 identified rare diseases, together affecting 10% of the population. However, fewer than 6% of all rare diseases have an approved treatment option, highlighting their tremendous unmet needs in drug development. The process of repurposing drugs for new indications, compared with the development of novel orphan drugs, is a time-saving and cost-efficient method resulting in higher success rates, which can therefore drastically reduce the risk of drug development for rare diseases. Although drug repurposing is not novel, new strategies have been developed in recent years to do it in a systematic and rational way. Here, we review applied methodologies, recent accomplished progress, and the challenges associated in drug repurposing for rare diseases.
Collapse
Affiliation(s)
- Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center, Location VUMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Orro A, Uggeri M, Rusnati M, Urbinati C, Pedemonte N, Pesce E, Moscatelli M, Padoan R, Cichero E, Fossa P, D'Ursi P. In silico drug repositioning on F508del-CFTR: A proof-of-concept study on the AIFA library. Eur J Med Chem 2021; 213:113186. [PMID: 33472120 DOI: 10.1016/j.ejmech.2021.113186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Computational drug repositioning is of growing interest to academia and industry, for its ability to rapidly screen a huge number of candidates in silico (exploiting comprehensive drug datasets) together with reduced development cost and time. The potential of drug repositioning has not been fully evaluated yet for cystic fibrosis (CF), a disease mainly caused by deletion of Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. F508del-CFTR is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. CF is still a fatal disease. Nowadays, it is treatable by some CFTR-rescuing drugs, but new-generation drugs with stronger therapeutic benefits and fewer side effects are still awaited. In this manuscript we report about the results of a pilot computational drug repositioning screening in search of F508del-CFTR-targeted drugs performed on AIFA library by means of a dedicated computational pipeline and surface plasmon resonance binding assay to experimentally validate the computational findings.
Collapse
Affiliation(s)
- Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Matteo Uggeri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy; Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Moscatelli
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Rita Padoan
- Department of Pediatrics, Regional Support Centre for Cystic Fibrosis, Children's Hospital-ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy.
| |
Collapse
|