1
|
Shahraki K, Najafi A, Ilkhani Pak V, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. The Traces of Dysregulated lncRNAs-Associated ceRNA Axes in Retinoblastoma: A Systematic Scope Review. Curr Eye Res 2024; 49:551-564. [PMID: 38299506 DOI: 10.1080/02713683.2024.2306859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE Long non-coding RNAs are an essential component of competing endogenous RNA regulatory axes and play their role by sponging microRNAs and interfering with the regulation of gene expression. Because of the broadness of competing endogenous RNA interaction networks, they may help investigate treatment targets in complicated disorders. METHODS This study performed a systematic scoping review to assess verified loops of competing endogenous RNAs in retinoblastoma, emphasizing the competing endogenous RNAs axis related to long non-coding RNAs. We used a six-stage approach framework and the PRISMA guidelines. A systematic search of seven databases was done to locate suitable papers published before February 2022. Two reviewers worked independently to screen articles and collect data. RESULTS Out of 363 records, fifty-one articles met the inclusion criteria, and sixty-three axes were identified in desired articles. The majority of the research reported several long non-coding RNAs that were experimentally verified to act as competing endogenous RNAs in retinoblastoma: XIST/NEAT1/MALAT1/SNHG16/KCNQ1OT1, respectively. At the same time, around half of the studies investigated unique long non-coding RNAs. CONCLUSIONS Understanding the many features of this regulatory system may aid in elucidating the unknown etiology of Retinoblastoma and providing novel molecular targets for therapeutic and clinical applications.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
2
|
Yan LR, Ding HX, Shen SX, Lu XD, Yuan Y, Xu Q. Pepsinogen C expression-related lncRNA/circRNA/mRNA profile and its co-mediated ceRNA network in gastric cancer. Funct Integr Genomics 2021; 21:605-618. [PMID: 34463892 DOI: 10.1007/s10142-021-00803-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
The expression of pepsinogen C (PGC) is considered an ideal negative biomarker of gastric cancer, but its pathological mechanisms remain unclear. This study aims to analyze competing endogenous RNA (ceRNA) networks related to PGC expression at a post-transcriptional level and build an experimental basis for studying the role of PGC in the progression of gastric cancer. RNA sequencing technology was used to detect the differential expression (DE) profiles of PGC-related long non-coding (lnc)RNAs, circular (circ)RNAs, and mRNAs. Ggcorrplot R package and online database were used to construct DElncRNAs/DEcircRNAs co-mediated PGC expression-related ceRNA networks. In vivo and in vitro validations were performed using quantitative reverse transcription-PCR (qRT-PCR). RNA sequencing found 637 DEmRNAs, 698 DElncRNAs, and 38 DEcircRNAs. The PPI network of PGC expression-related mRNAs consisted of 503 nodes and 1179 edges. CFH, PPARG, and MUC6 directly interacted with PGC. Enrichment analysis suggested that DEmRNAs were mainly enriched in cancer-related pathways. Eleven DElncRNAs, 13 circRNAs, and 35 miRNA-mRNA pairs were used to construct ceRNA networks co-mediated by DElncRNAs and DEcircRNAs that were PGC expression-related. The network directly related to PGC was as follows: SNHG16/hsa_circ_0008197-hsa-mir-98-5p/hsa-let-7f-5p/hsa-let-7c-5p-PGC. qRT-PCR validation results showed that PGC, PPARG, SNHG16, and hsa_circ_0008197 were differentially expressed in gastric cancer cells and tissues: PGC positively correlated with PPARG (r = 0.276, P = 0.009), SNHG16 (r = 0.35, P = 0.002), and hsa_circ_0008197 (r = 0.346, P = 0.005). PGC-related DElncRNAs and DEcircRNAs co-mediated complicated ceRNA networks to regulate PGC expression, thus affecting the occurrence and development of gastric cancer at a post-transcriptional level. Of these, the network directly associated with PGC expression was a SNHG16/hsa_circ_0008197-mir-98-5p/hsa-let-7f-5p/hsa-let-7c-5p - PGC axis. This study may form a foundation for the subsequent exploration of the possible regulatory mechanisms of PGC in gastric cancer.
Collapse
Affiliation(s)
- Li-Rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, 110001, Shenyang, China
| | - Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, 110001, Shenyang, China
| | - Shi-Xuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, 110001, Shenyang, China
| | - Xiao-Dong Lu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, 110001, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, 110001, Shenyang, China.
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, 110001, Shenyang, China.
| |
Collapse
|
3
|
Yang M, Wei W. SNHG16: A Novel Long-Non Coding RNA in Human Cancers. Onco Targets Ther 2019; 12:11679-11690. [PMID: 32021246 PMCID: PMC6942535 DOI: 10.2147/ott.s231630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/13/2019] [Indexed: 01/27/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently been considered as central regulators in diverse biological processes controlling tumorigenesis. Small nucleolar RNA host gene 16 (SNHG16) is an important tumor-associated lncRNA mainly involved in tumorigenesis and progression by competing with endogenous RNA (ceRNA) which sponges tumor-suppressive microRNA (miRNA), and by its recruitment mechanism. SNHG16 is overexpressed in tumor tissues and cell lines of different kinds of cancers, and its presence is associated with a poor clinical prognosis. Reviewing all publications about SNHG16 revealed that it plays a key role in the different hallmarks that define human cancer, including promoting proliferation, activating migration and invasion, inhibiting apoptosis, affecting lipid metabolism and chemoresistance. This review highlights the role that the aberrant expression of SNHG16 plays in the development and progression of cancer, and suggests that SNHG16 may function as a potential biomarker and therapeutic target for human cancers.
Collapse
Affiliation(s)
- Ming Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| |
Collapse
|