1
|
Gu Y, Chen X, Tian M, Liu K. Erythroblast transformation-specific-related gene promotes metastasis of oral squamous cell carcinoma by transcriptionally upregulating peroxiredoxin 1. J Oral Pathol Med 2024; 53:404-413. [PMID: 38797866 DOI: 10.1111/jop.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Some studies confirmed that erythroblast transformation-specific-related gene (ERG) may be a pathogenic factor of oral squamous cell carcinoma (OSCC). However, the undergoing molecular mechanism has not been elucidated yet. OBJECTIVE In this study, the investigation will focus on how the transcription factor ERG modulates the biological behaviors of OSCC. METHODS In this study, cancer tissue specimens and corresponding paracancer tissues were collected from 54 patients. Real-time polymerase chain reaction analysis and Western blots were employed to detect the expression of multiple genes. Cell proliferation assays, Transwell, and flow cytometry assay were utilized to detect the proliferation, invasion, and apoptosis of OSCC cell, respectively. Dual luciferase reporter gene and chromatin immunoprecipitation assays were conducted to verify the regulation of ERG on PRDX1. RESULTS ERG exhibits high expression levels in OSCC. Inhibition of ERG has been shown to effectively suppress the malignant growth of OSCC cells. Moreover, ERG has been found to transcriptionally upregulate the expression of PRDX1. The knockdown of PRDX1 has demonstrated its ability to inhibit the malignant growth of OSCC cells. Interestingly, when PRDX1 is overexpressed, it attenuates the inhibitory effect of si-ERG on the malignant growth of OSCC cells. This suggests that PRDX1 may play a crucial role in mediating the impact of ERG on malignancy in OSCC cells. CONCLUSION The transcription factor ERG promotes the expression of PRDX1, which could enhance the proliferation and invasion while inhibiting the apoptosis of OSCC cells.
Collapse
Affiliation(s)
- Yujia Gu
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Xue Chen
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Mei Tian
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, China
| | - Ke Liu
- Department of Stomatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Li L, Li J, Lu Y, Li W, Yang J, Wang M, Miao C, Tian Z, Zhang M, Tang X. Conditional knockout mouse model reveals a critical role of peroxiredoxin 1 in oral leukoplakia carcinogenesis. Heliyon 2024; 10:e31227. [PMID: 38818156 PMCID: PMC11137383 DOI: 10.1016/j.heliyon.2024.e31227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Peroxiredoxin 1 (Prx1) is an antioxidant protein that may promote the carcinogenesis in oral leukoplakia (OLK). To investigate the effect of Prx1 on the oral mucosal epithelium of OLK, we generated a Prx1 conditional knockout (cKO) mouse model. The mRNA and gRNA were generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technique. An infusion cloning method was used to construct a homologous recombination vector. To obtain the F0 generation mice, fertilized eggs of C57BL/6J mice were microinjected with Cas9 mRNA, gRNA, and a donor vector. Polymerase chain reaction (PCR) amplification and sequencing were used to identify F1 generation mice. Using the cyclization recombination-enzyme-locus of the X-overP1 (Cre-loxP) system, we created a Prx1 cKO mouse model, and the effectiveness of the knockout was confirmed through immunohistochemistry. We examined the influence of Prx1 knockout on the occurrence of OLK in mice by constructing a model of tongue mucosa carcinogenesis induced by 4-nitroquinoline-1-oxide (4NQO). Prx1 modification was present in the F1 generation, as evidenced by PCR amplification and sequencing. Prx1flox/flox: Cre + mice exhibited normal growth and fertility. Immunohistochemical analysis revealed that tongue epithelial cells in Prx1flox/flox: Cre + mice displayed a distinct deletion of Prx1. An examination of the heart, liver, spleen, lung, and kidney tissues revealed no visible histological changes. Histological analysis showed a reduction in the occurrence of the malignant transformation of OLK in the tongue tissues of Prx1flox/flox: Cre + mice. Ki67 immunostaining showed that Prx1 knockout significantly inhibited cell proliferation in the tongue epithelial. Our research developed a conditional knockout mouse model for Prx1. The obtained results provide insights into the function of Prx1 in the development of oral cancer and emphasize its potential as a therapeutic target for precancerous oral lesions.
Collapse
Affiliation(s)
- Lingyu Li
- Department of Oral Pathology, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Yunping Lu
- Department of Prosthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Wenjing Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Yang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Min Wang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Congcong Miao
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenchuan Tian
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Min Zhang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhou X, Zhao M, Fan Y, Xu Y. Identification of a necroptosis-related gene signature for making clinical predictions of the survival of patients with lung adenocarcinoma. PeerJ 2024; 12:e16616. [PMID: 38213773 PMCID: PMC10782958 DOI: 10.7717/peerj.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a major pathological subtype of malignant lung cancer with a poor prognosis. Necroptosis is a caspase-independent programmed cell death mode that plays a pivotal role in cancer oncogenesis and metastasis. Here, we explore the prognostic values of different necroptosis-related genes (NRGs) in LUAD. Methods mRNA expression data and related clinical information for LUAD samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. NRGs were identified using the GeneCards database. Least absolute shrinkage and selection operator Cox regression and multivariate Cox analysis were used to construct a prognostic risk model. Time-dependent receiver-operating characteristic curves and a nomogram were constructed to validate the predictive values of the prognostic signatures. A necroptosis-related protein-protein interaction network was visualised using the STRING database and Cytoscape software. Functional analyses, including Gene Ontology, Kyoto Encyclopaedia of Genes and Genomes pathway enrichment, gene set enrichment, and gene set variation analyses, were conducted to explore the underlying molecular mechanisms. Finally, the mRNA expression of the prognostic signatures in LUAD cell lines was assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Results A prognostic model was established for eight NRGs (CALM1, DDX17, FPR1, OGT, PGLYRP1, PRDX1, TUFM, and CPSF3) based on TCGA-cohort data and validated with the GSE68465 cohort. Patients with low-risk scores had better survival outcomes than those with high-risk scores (p = 0.00013). The nomogram was used to predict the prognosis of patients with LUAD. The prediction curves for 1-, 3-, and 5-year OS showed good predictive performance and the accuracy of the nomograms increased over time. RT-qPCR results demonstrated that these eight genes, especially CALM1, PRDX1, and PGLYRP1, were differentially expressed in LUAD cells. Conclusion We constructed a reliable eight-NRG signature that provides new insights for guiding clinical practice in the prognosis and treatment of LUAD.
Collapse
Affiliation(s)
- Xiaoping Zhou
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yingzi Fan
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xu
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Kotnik EN, Mullen MM, Spies NC, Li T, Inkman M, Zhang J, Martins-Rodrigues F, Hagemann IS, McCourt CK, Thaker PH, Hagemann AR, Powell MA, Mutch DG, Khabele D, Longmore GD, Mardis ER, Maher CA, Miller CA, Fuh KC. Genetic characterization of primary and metastatic high-grade serous ovarian cancer tumors reveals distinct features associated with survival. Commun Biol 2023; 6:688. [PMID: 37400526 DOI: 10.1038/s42003-023-05026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC) is the most lethal histotype of ovarian cancer and the majority of cases present with metastasis and late-stage disease. Over the last few decades, the overall survival for patients has not significantly improved, and there are limited targeted treatment options. We aimed to better characterize the distinctions between primary and metastatic tumors based on short- or long-term survival. We characterized 39 matched primary and metastatic tumors by whole exome and RNA sequencing. Of these, 23 were short-term (ST) survivors (overall survival (OS) < 3.5 years) and 16 were long-term (LT) survivors (OS > 5 years). We compared somatic mutations, copy number alterations, mutational burden, differential gene expression, immune cell infiltration, and gene fusion predictions between the primary and metastatic tumors and between ST and LT survivor cohorts. There were few differences in RNA expression between paired primary and metastatic tumors, but significant differences between the transcriptomes of LT and ST survivors in both their primary and metastatic tumors. These findings will improve the understanding of the genetic variation in HGSC that exist between patients with different prognoses and better inform treatments by identifying new targets for drug development.
Collapse
Affiliation(s)
- Emilee N Kotnik
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Mary M Mullen
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Nicholas C Spies
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8118, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8103, St. Louis, MO, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8224, St. Louis, MO, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8224, St. Louis, MO, USA
| | - Fernanda Martins-Rodrigues
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
| | - Ian S Hagemann
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8118, St. Louis, MO, USA
| | - Carolyn K McCourt
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Premal H Thaker
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Andrea R Hagemann
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Matthew A Powell
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - David G Mutch
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Dineo Khabele
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Gregory D Longmore
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
- ICCE Institute, Washington University in St. Louis, 660 S. Euclid Ave CB, 8225, St. Louis, MO, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Childrens Crossroad, Columbus, OH, USA
| | - Christopher A Maher
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, 4444 Forest Park Avenue, CB 8501, St. Louis, MO, USA
- Department of Internal Medicine, Washington University in St. Louis, 660 S. Euclid Ave, MSC 8066-22-6602, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, McKelvey School of Engineering, 1 Brookings Drive, St. Louis, MO, USA
| | - Christopher A Miller
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
| | - Katherine C Fuh
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Department of Obstetrics and Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Li J, Sun Y, Zhao X, Ma Y, Xie Y, Liu S, Hui B, Shi X, Sun X, Zhang X. Radiation induces IRAK1 expression to promote radioresistance by suppressing autophagic cell death via decreasing the ubiquitination of PRDX1 in glioma cells. Cell Death Dis 2023; 14:259. [PMID: 37031183 PMCID: PMC10082800 DOI: 10.1038/s41419-023-05732-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 04/10/2023]
Abstract
Radiotherapy is the standard adjuvant treatment for glioma patients; however, the efficacy is limited by radioresistance. The function of Interleukin-1 receptor associated kinase 1 (IRAK1) in tumorigenesis and radioresistance remains to be elucidated. IRAK1 expression and its correlation with prognosis were analyzed in glioma tissues. We found that glioma patients with overexpressed IRAK1 show a poor prognosis. Notably, ionizing radiation (IR) remarkably induces IRAK1 expression, which was decreased by STING antagonist H-151 treatment. JASPAR prediction, ChIP assays, and dual luciferase reporter assays indicated that transcription factor FOXA2, suppressed by STING inhibition, directly binds to the IRAK1 promoter region and activates its transcription. IRAK1 knockdown inhibits malignancy and enhances the radiosensitivity of glioma in vitro and in vivo. To explore the potential IRAK1 interacting targets mediating the radioresistance of glioma cells, IP/Co-IP, LC-MS/MS, GST pull-down, and ubiquitination analyses were conducted. Mechanistically, IRAK1 bound to PRDX1, a major member of antioxidant enzymes, and further prevents ubiquitination and degradation of PRDX1 mediated by E3 ubiquitin ligase HECTD3; Both the DOC and HECT domains of HECTD3 directly interacted with PRDX1 protein. Overexpression of PRDX1 reverses the radiotherapy sensitization effect of IRAK1 depletion by diminishing autophagic cell death. These results suggest the IRAK1-PRDX1 axis provides a potential therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Siqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Beina Hui
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaobo Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xuanzi Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
6
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
7
|
Cao R, Zhang W, Zhang H, Wang L, Chen X, Ren X, Cheng B, Xia J. Comprehensive Analysis of the PRDXs Family in Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:798483. [PMID: 35350568 PMCID: PMC8957933 DOI: 10.3389/fonc.2022.798483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The peroxidase family of peroxiredoxins (PRDXs) plays a vital role in maintaining the intracellular balance of ROS. However, their function in head and neck squamous cell carcinoma (HNSCC) has not been investigated. We therefore explored the value of PRDXs in HNSCC. We found that the expression of PRDX1, PRDX4, and PRDX5 in HNSCC increased while the expression of PRDX2 decreased. Moreover, the high expression of PRDX4/5/6 indicated a poor prognosis. Lower expression of PRDX1/5 was linked to more immune cell infiltration, higher expression of immune-related molecules and a more likely response to anti-PD-1 treatment. Moreover, PRDX5 knockdown inhibited HNSCC cell proliferation, invasion and metastasis and it might promote apoptosis through its antioxidant property. Taken together, our study highlights the potential role of PRDXs in HNSCC. The function of PRDX5 in the development of HNSCC and the formation of the immune microenvironment makes it a promising potential therapeutic target.
Collapse
Affiliation(s)
- Ruoyan Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Weilin Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongjian Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lixuan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Gong J, Shen Y, Jiang F, Wang Y, Chu L, Sun J, Shen P, Chen M. MicroRNA‑20a promotes non‑small cell lung cancer proliferation by upregulating PD‑L1 by targeting PTEN. Oncol Lett 2022; 23:148. [PMID: 35350588 PMCID: PMC8941509 DOI: 10.3892/ol.2022.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the most common malignant tumors worldwide. The aim of the present study was to investigate the possibility of microRNA-20a (miR-20a) as a biomarker and therapeutic target for the diagnosis and treatment of NSCLC. Bioinformatics prediction, together with functional validation, confirmed miR-20a bound to programmed death ligand-1 (PD-L1) 3′-untranslated region to upregulate PD-L1 expression. Both miR-20a and PD-L1 could promote the proliferation of NSCLC cells. The expression level of PD-L1 was controlled by PTEN; however, further upstream regulation of PD-L1 expression was largely unknown. The present study showed that miR-20a could not restore the inhibition of PD-L1 expression levels by PTEN. Knockdown of PTEN expression upregulated the expression level of PD-L1 and promoted the proliferation of NSCLC cells. PTEN negatively regulated the Wnt/β-catenin signaling pathway by inhibiting β-catenin and Cyclin D1. Interestingly, PTEN could reverse miR-20a-mediated proliferation of NSCLC cells and the inhibitory effect was similar to that of XAV-939. miR-20a promotes the proliferation of NSCLC cells by inhibiting the expression level of PTEN and upregulating the expression level of PD-L1. It is suggested that miR-20a could be used as a biomarker and therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jiaomei Gong
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Yong Shen
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Fuguo Jiang
- Department of Clinical Laboratory, Jiaozuo People's Hospital, Jiaozuo, Henan 454000, P.R. China
| | - Yan Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Lulu Chu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Jinqi Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Pengxiao Shen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| | - Maocai Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450013, P.R. China
| |
Collapse
|
9
|
Lyu XY, Shui YS, Wang L, Jiang QS, Meng LX, Zhan HY, Yang R. WDR5 promotes the tumorigenesis of oral squamous cell carcinoma via CARM1/β-catenin axis. Odontology 2021; 110:138-147. [PMID: 34398317 DOI: 10.1007/s10266-021-00649-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignancy all over the world. WD repeat domain 5 (WDR5) is involved in cancer progression. In addition, it was reported that WDR5 is upregulated in head and neck cancer, while its role in OSCC is unknown. First, the expression of WDR5 in oral cancer tissues and cells was examined by qRT-PCR, IHF and western blot. CCK-8 assay was performed to test the cell viability. Cell migration was assessed by transwell assay. Knocking down WDR5 or CARM1 in oral cancer cells to detect its function on cancer growth, WDR5 and CARM1 were significantly upregulated in OSCC. Silencing WDR5 suppressed OSCC cell viability and migration. CARM1 level in OSCC cells was significantly inhibited by WDR5 downregulation, and CARM1 elevation could rescue the effect of WDR5 knockdown on tumorigenesis of OSCC. Moreover, silencing of WDR5 notably inactivated β-catenin signaling pathway, while this phenomenon was restored by CARM1 overexpression. Silencing of WDR5 attenuated the tumorigenesis of OSCC via CARM1/β-catenin axis. Thus, WDR5 might be a target for OSCC treatment.
Collapse
Affiliation(s)
- Xiao-Ying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Yu-Sen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Liang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Qing-Song Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Ling-Xi Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Hao-Yuan Zhan
- Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
10
|
Xu S, Ma Y, Tong Q, Yang J, Liu J, Wang Y, Li G, Zeng J, Fang S, Li F, Xie X, Zhang J. Cullin-5 neddylation-mediated NOXA degradation is enhanced by PRDX1 oligomers in colorectal cancer. Cell Death Dis 2021; 12:265. [PMID: 33712558 PMCID: PMC7954848 DOI: 10.1038/s41419-021-03557-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023]
Abstract
NOXA, a BH3-only proapoptotic protein involved in regulating cell death decisions, is highly expressed but short-lived in colorectal cancer (CRC). Neddylated cullin-5 (CUL5)-mediated ubiquitination and degradation of NOXA is crucial to prevent its overaccumulation and maintain an appropriate action time. However, how this process is manipulated by CRC cells commonly exposed to oxidative stress remain unknown. The peroxiredoxin PRDX1, a conceivable antioxidant overexpressed in CRC tissues, has been shown to inhibit apoptosis and TRAF6 ubiquitin-ligase activity. In this study, we found that PRDX1 inhibits CRC cell apoptosis by downregulating NOXA. Mechanistically, PRDX1 promotes NOXA ubiquitination and degradation, which completely depend on CUL5 neddylation. Further studies have demonstrated that PRDX1 oligomers bind with both the Nedd8-conjugating enzyme UBE2F and CUL5 and that this tricomplex is critical for CUL5 neddylation, since silencing PRDX1 or inhibiting PRDX1 oligomerization greatly dampens CUL5 neddylation and NOXA degradation. An increase in reactive oxygen species (ROS) is not only a hallmark of cancer cells but also the leading driving force for PRDX1 oligomerization. As shown in our study, although ROS play a role in upregulating NOXA mRNA transcription, ROS scavenging in CRC cells by N-acetyl-L-cysteine (NAC) can significantly reduce CUL5 neddylation and extend the NOXA protein half-life. Therefore, in CRC, PRDX1 plays a key role in maintaining intracellular homeostasis under conditions of high metabolic activity by reinforcing UBE2F-CUL5-mediated degradation of NOXA, which is also evidenced in the resistance of CRC cells to etoposide treatment. Based on these findings, targeting PRDX1 could be an effective strategy to overcome the resistance of CRC to DNA damage-inducing chemotherapeutics.
Collapse
Affiliation(s)
- Shoufang Xu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Yilei Ma
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Qingchao Tong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Jun Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Cytopathology, Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, P.R. China
- Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, P. R. China
| | - Jia Liu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Guoli Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Jin Zeng
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Sining Fang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Fengying Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|