1
|
Rivera CA, Bhatia S, Morell AA, Daggubati LC, Merenzon MA, Sheriff SA, Luther E, Chandar J, S Levy A, Metzler AR, Berke CN, Goryawala M, Mellon EA, Bhatia RG, Nagornaya N, Saigal G, I de la Fuente M, Komotar RJ, Ivan ME, Shah AH. Metabolic signatures derived from whole-brain MR-spectroscopy identify early tumor progression in high-grade gliomas using machine learning. J Neurooncol 2024; 170:579-589. [PMID: 39180640 PMCID: PMC11614968 DOI: 10.1007/s11060-024-04812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Recurrence for high-grade gliomas is inevitable despite maximal safe resection and adjuvant chemoradiation, and current imaging techniques fall short in predicting future progression. However, we introduce a novel whole-brain magnetic resonance spectroscopy (WB-MRS) protocol that delves into the intricacies of tumor microenvironments, offering a comprehensive understanding of glioma progression to inform expectant surgical and adjuvant intervention. METHODS We investigated five locoregional tumor metabolites in a post-treatment population and applied machine learning (ML) techniques to analyze key relationships within seven regions of interest: contralateral normal-appearing white matter (NAWM), fluid-attenuated inversion recovery (FLAIR), contrast-enhancing tumor at time of WB-MRS (Tumor), areas of future recurrence (AFR), whole-brain healthy (WBH), non-progressive FLAIR (NPF), and progressive FLAIR (PF). Five supervised ML classification models and a neural network were developed, optimized, trained, tested, and validated. Lastly, a web application was developed to host our novel calculator, the Miami Glioma Prediction Map (MGPM), for open-source interaction. RESULTS Sixteen patients with histopathological confirmation of high-grade glioma prior to WB-MRS were included in this study, totaling 118,922 whole-brain voxels. ML models successfully differentiated normal-appearing white matter from tumor and future progression. Notably, the highest performing ML model predicted glioma progression within fluid-attenuated inversion recovery (FLAIR) signal in the post-treatment setting (mean AUC = 0.86), with Cho/Cr as the most important feature. CONCLUSIONS This study marks a significant milestone as the first of its kind to unveil radiographic occult glioma progression in post-treatment gliomas within 8 months of discovery. These findings underscore the utility of ML-based WB-MRS growth predictions, presenting a promising avenue for the guidance of early treatment decision-making. This research represents a crucial advancement in predicting the timing and location of glioblastoma recurrence, which can inform treatment decisions to improve patient outcomes.
Collapse
Affiliation(s)
- Cameron A Rivera
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Shovan Bhatia
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexis A Morell
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lekhaj C Daggubati
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Surgical Neuro-Oncology, District of Columbia, George Washington Medical Faculty Associates, Washington, USA
| | - Martin A Merenzon
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sulaiman A Sheriff
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Evan Luther
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA, USA
| | - Jay Chandar
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Adam S Levy
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashley R Metzler
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chandler N Berke
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mohammed Goryawala
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL, USA
| | - Rita G Bhatia
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalya Nagornaya
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gaurav Saigal
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Macarena I de la Fuente
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL, USA
| | - Michael E Ivan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL, USA
| | - Ashish H Shah
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL, USA
| |
Collapse
|
2
|
Ma S, Pan X, Gan J, Guo X, He J, Hu H, Wang Y, Ning S, Zhi H. DNA methylation heterogeneity attributable to a complex tumor immune microenvironment prompts prognostic risk in glioma. Epigenetics 2024; 19:2318506. [PMID: 38439715 PMCID: PMC10936651 DOI: 10.1080/15592294.2024.2318506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Gliomas are malignant tumours of the human nervous system with different World Health Organization (WHO) classifications, glioblastoma (GBM) with higher grade and are more malignant than lower-grade glioma (LGG). To dissect how the DNA methylation heterogeneity in gliomas is influenced by the complex cellular composition of the tumour immune microenvironment, we first compared the DNA methylation profiles of purified human immune cells and bulk glioma tissue, stratifying three tumour immune microenvironmental subtypes for GBM and LGG samples from The Cancer Genome Atlas (TCGA). We found that more intermediate methylation sites were enriched in glioma tumour tissues, and used the Proportion of sites with Intermediate Methylation (PIM) to compare intertumoral DNA methylation heterogeneity. A larger PIM score reflected stronger DNA methylation heterogeneity. Enhanced DNA methylation heterogeneity was associated with stronger immune cell infiltration, better survival rates, and slower tumour progression in glioma patients. We then created a Cell-type-associated DNA Methylation Heterogeneity Contribution (CMHC) score to explore the impact of different immune cell types on heterogeneous CpG site (CpGct) in glioma tissues. We identified eight prognosis-related CpGct to construct a risk score: the Cell-type-associated DNA Methylation Heterogeneity Risk (CMHR) score. CMHR was positively correlated with cytotoxic T-lymphocyte infiltration (CTL), and showed better predictive performance for IDH status (AUC = 0.96) and glioma histological phenotype (AUC = 0.81). Furthermore, DNA methylation alterations of eight CpGct might be related to drug treatments of gliomas. In conclusion, we indicated that DNA methylation heterogeneity is associated with a complex tumour immune microenvironment, glioma phenotype, and patient's prognosis.
Collapse
Affiliation(s)
- Shuangyue Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xu Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaxin Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoyu Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuncong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Zhang L, Cui Y, Zhou G, Zhang Z, Zhang P. Leveraging mitochondrial-programmed cell death dynamics to enhance prognostic accuracy and immunotherapy efficacy in lung adenocarcinoma. J Immunother Cancer 2024; 12:e010008. [PMID: 39455097 PMCID: PMC11529751 DOI: 10.1136/jitc-2024-010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a highly heterogeneous disease, posing significant challenges to accurate prognosis prediction. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence programmed cell death (PCD) mechanisms, which are critical in tumorigenesis and cancer progression. However, the prognostic significance of the interplay between mitochondrial function and PCD in LUAD requires further investigation. METHODS We analyzed data from 1231 LUAD patients across seven global cohorts to develop a mitochondrial-related PCD signature (MPCDS) using machine learning. Validation was done using six immunotherapy cohorts (LUAD, melanoma, clear cell renal cell carcinoma; n=935) and a pan-cancer cohort of 21 tumor types. An in-house LUAD tissue cohort (n=100) confirmed the prognostic significance of nucleoside diphosphate kinase 4 (NME4). In vivo and in vitro experiments explored NME4's role in immune exclusion. RESULTS The MPCDS demonstrated strong predictive performance for prognosis in LUAD patients, surpassing 114 previously published LUAD signatures. Additionally, MPCDS effectively predicted outcomes in immunotherapy patients (including those with LUAD, melanoma, and clear cell renal cell carcinoma). Biologically, MPCDS was significantly associated with immune features, with the high MPCDS group exhibiting reduced immune activity and a tendency towards cold tumors. NME4, a key gene within the MPCDS (correlation=0.55, p<0.05), was associated with poorer prognosis in LUAD patients with high expression, particularly in CD8 desert phenotypes, as validated by our in-house cohort. Multiplex immunofluorescence confirmed the spatial colocalization and exclusion relationship between NME4 and immune cells such as CD3+ T cells and CD20+ B cells. Further experiments revealed that NME4 regulated the proliferation and invasion of LUAD cells both in vitro and in vivo. Importantly, inhibiting NME4 increased the abundance and activity of CD8+ T cells and enhanced the antitumor immunity of anti-programmed cell death protein-1 therapy in vivo. CONCLUSION The MPCDS provides personalized risk assessment and immunotherapy interventions for individual LUAD patients. NME4, a key gene within the MPCDS, has been identified as a novel oncogene associated with immune exclusion and may serve as a new target for LUAD intervention and immunotherapy.
Collapse
Affiliation(s)
- Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanan Cui
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Zou B, Li M, Zhang J, Gao Y, Huo X, Li J, Fan Y, Guo Y, Liu X. Application of a risk score model based on glycosylation-related genes in the prognosis and treatment of patients with low-grade glioma. Front Immunol 2024; 15:1467858. [PMID: 39445005 PMCID: PMC11496118 DOI: 10.3389/fimmu.2024.1467858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Low-grade gliomas (LGG) represent a heterogeneous and complex group of brain tumors. Despite significant progress in understanding and managing these tumors, there are still many challenges that need to be addressed. Glycosylation, a common post-translational modification of proteins, plays a significant role in tumor transformation. Numerous studies have demonstrated a close relationship between glycosylation modifications and tumor progression. However, the biological function of glycosylation-related genes in LGG remains largely unexplored. Their potential roles within the LGG microenvironment are also not well understood. Methods We collected RNA-seq data and scRNA-seq data from patients with LGG from TCGA and GEO databases. The glycosylation pathway activity scores of each cluster and each patient were calculated by irGSEA and GSVA algorithms, and the differential genes between the high and low glycosylation pathway activity score groups were identified. Prognostic risk profiles of glycosylation-related genes were constructed using univariate Cox and LASSO regression analyses and validated in the CGGA database. Results An 8 genes risk score signature including ASPM, CHI3L1, LILRA4, MSN, OCIAD2, PTGER4, SERPING1 and TNFRSF12A was constructed based on the analysis of glycosylation-related genes. Patients with LGG were divided into high risk and low risk groups according to the median risk score. Significant differences in immunological characteristics, TIDE scores, drug sensitivity, and immunotherapy response were observed between these groups. Additionally, survival analysis of clinical medication information in the TCGA cohort indicated that high risk and low risk groups have different sensitivities to drug therapy. The risk score characteristics can thus guide clinical medication decisions for LGG patients. Conclusion Our study established glycosylation-related gene risk score signatures, providing new perspectives and approaches for prognostic prediction and treatment of LGG.
Collapse
Affiliation(s)
- Binbin Zou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingtai Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiachen Zhang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingzhen Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoya Huo
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinhu Li
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yimin Fan
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanlin Guo
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodong Liu
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Soleman J, Constantini S, Roth J. Incidental brain tumor findings in children: prevalence, natural history, management, controversies, challenges, and dilemmas. Childs Nerv Syst 2024; 40:3179-3187. [PMID: 39215810 PMCID: PMC11511734 DOI: 10.1007/s00381-024-06598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Incidental brain tumor findings in children involve the unexpected discovery of brain lesions during imaging for unrelated reasons. These findings differ significantly from those in adults, requiring a focus on pediatric-specific approaches in neurosurgery, neuroimaging, and neuro-oncology. Understanding the prevalence, progression, and management of these incidentalomas is crucial for informed decision-making, balancing patient welfare with the risks and benefits of intervention. Incidental brain tumors are observed in about 0.04-5.7% of cases, with most suspected low-grade lesions in children showing a benign course, though up to 3% may undergo malignant transformation. Treatment decisions are influenced by factors such as patient age, tumor characteristics, and family anxiety, with conservative management through surveillance often preferred. However, upfront surgery may be considered in cases with low surgical risk. Initial follow-up typically involves a comprehensive MRI after three months, with subsequent scans spaced out if the lesion remains stable. Changes in imaging or symptoms during follow-up could indicate malignant transformation, prompting consideration of surgery or biopsy. Several challenges and controversies persist, including the role of upfront biopsy for molecular profiling, the use of advanced imaging techniques like PET-CT and magnetic resonance spectroscopy, and the implications of the child's age at diagnosis. These issues highlight the need for further research to guide management and improve outcomes in pediatric patients with incidental brain tumor findings.
Collapse
Affiliation(s)
- Jehuda Soleman
- Department of Neurosurgery and Pediatric Neurosurgery, University Hospital and Children's Hospital Basel, Spitalstrasse 21, Basel, 4031, Switzerland.
- Faculty of Medicine, University of Basel, Basel, Switzerland.
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv-Yafo, Israel
| | - Jonathan Roth
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv-Yafo, Israel
| |
Collapse
|
6
|
Yang SD, Chen MZ, Yang DF, Hu SB, Zheng DD. IL-6 significantly correlated with the prognosis in low-grade glioma and the mediating effect of immune microenvironment. Medicine (Baltimore) 2024; 103:e38091. [PMID: 38728467 PMCID: PMC11081577 DOI: 10.1097/md.0000000000038091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
To screen immune-related prognostic biomarkers in low-grade glioma (LGG), and reveal the potential regulatory mechanism. The differential expressed genes (DEGs) between alive and dead patients were initially identified, then the key common genes between DEGs and immune-related genes were obtained. Regarding the key DEGs associated with the overall survival (OS), their clinical value was assessed by Kaplan-Meier, RCS, logistic regression, ROC, and decision curve analysis methods. We also assessed the role of immune infiltration on the association between key DEGs and OS. All the analyses were based on the TGCA-LGG data. Finally, we conducted the molecular docking analysis to explore the targeting binding of key DEGs with the therapeutic agents in LGG. Among 146 DEGs, only interleukin-6 (IL-6) was finally screened as an immune-related biomarker. High expression of IL-6 significantly correlated with poor OS time (all P < .05), showing a linear relationship. The combination of IL-6 with IDH1 mutation had the most favorable prediction performance on survival status and they achieved a good clinical net benefit. Next, we found a significant relationship between IL-6 and immune microenvironment score, and the immune microenvironment played a mediating effect on the association of IL-6 with survival (all P < .05). Detailly, IL-6 was positively related to M1 macrophage infiltration abundance and its biomarkers (all P < .05). Finally, we obtained 4 therapeutic agents in LGG targeting IL-6, and their targeting binding relationships were all verified. IL6, as an immune-related biomarker, was associated with the prognosis in LGG, and it can be a therapeutic target in LGG.
Collapse
Affiliation(s)
- Shi-Di Yang
- Department of Neurosurgery, Ningbo Medical Centre LiHuiLi Hospital, Ningbo, Zhejiang, China
| | - Meng-Zong Chen
- Department of Neurosurgery, Ningbo Medical Centre LiHuiLi Hospital, Ningbo, Zhejiang, China
| | - Deng-Feng Yang
- Department of Neurosurgery, Ningbo Medical Centre LiHuiLi Hospital, Ningbo, Zhejiang, China
| | - Shao-Bo Hu
- Department of Neurosurgery, Ningbo Medical Centre LiHuiLi Hospital, Ningbo, Zhejiang, China
| | - Dong-Dong Zheng
- Department of Neurosurgery, Ningbo Medical Centre LiHuiLi Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Fei M, Lu C, Feng B, Sun J, Wang J, Sun F, Dong B. Bioinformatics analyses and experimental validation of the role of phagocytosis in low-grade glioma. ENVIRONMENTAL TOXICOLOGY 2024; 39:2182-2196. [PMID: 38112449 DOI: 10.1002/tox.24095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Phagocytosis is of vital importance in tumor immune response. The alteration of phagocytosis in low-grade glioma (LGG) has not been investigated. METHODS The mRNA, copy number variation, single nucleotide variation, and methylation levels of phagocytosis-related genes were summarized in pan-cancer. Non-negative matrix factorization clustering was utilized to identify two LGG subtypes. LASSO regression analysis was performed to construct a phagocytosis-related prognostic signature (PRPS). Immune characteristics, immunotherapy response, and targeted-drug sensitivity were further explored. The phagocytosis activity in glioma was evaluated using scRNA-seq data. Multiplex immunohistochemical (m-IHC) technology was performed to identify the tumor-infiltrating immune cells in LGG. RESULTS The phagocytosis-related genes altered obviously in pan-cancer compared with corresponding normal tissues. Two LGG subtypes were obtained and the subtype with poor prognosis was combined with lower tumor purity, more active immune-related pathways, increasing infiltration of CD4+ T cells, CD8+ T cells, and natural killer (NK) cells, decreasing infiltration of macrophages, mast cells, and neutrophils, distinct pathway activity and cell death status, greater response to immunotherapy, and higher sensitivity to cyclophosphamide, erlotinib, gefitinib, lapatinib, and sorafenib. In addition, a PRPS involving 10 genes (i.e., SLC11A1, CAMK1D, PLA2G5, STAP1, ALOX15, PLCG2, SFTPD, AZU1, RAB27A, and LAMTOR2) was constructed to estimate the risk level of each LGG sample and high risk LGG patients had poor prognosis, upregulated infiltration of neutrophil, macrophage, Treg, and myeloid dendritic cell, down regulated infiltration of monocyte and NK cell, and increasing expression of large number of immune checkpoint genes. The phagocytosis activity is notably active in monocyte/macrophage. The m-IHC results confirmed increased infiltration of macrophages and neutrophils in LGG samples with high SLC11A1 expression. CONCLUSION The molecular characteristics of phagocytosis were revealed and the PRPS laid the foundation for personalized therapy in LGG.
Collapse
Affiliation(s)
- Mingyang Fei
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chunlin Lu
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Baozhi Feng
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaao Sun
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jie Wang
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fei Sun
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurosurgery, Xinhua Hospital Affiliated to Dalian University, Dalian, Liaoning, China
| | - Bin Dong
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Caffaratti G, Ruella M, Villamil F, Keller G, Savini D, Cervio A. Experience in awake glioma surgery in a South American center. Correlation between intraoperative evaluation, extent of resection and functional outcomes. World Neurosurg X 2024; 22:100357. [PMID: 38469388 PMCID: PMC10926357 DOI: 10.1016/j.wnsx.2024.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Gliomas are the second most frequent primary brain tumors. Surgical resection remains a crucial part of treatment, as well as maximum preservation of neurological function. For this reason awake surgery has an important role.The objectives of this article are to present our experience with awake surgery for gliomas in a South American center and to analyze how intraoperative functional findings may influence the extent of resection and neurological outcomes. Materials and methods Retrospective single center study of a cohort of adult patients undergoing awake surgery for brain glioma, by the same neurosurgeon, between 2012 and 2022 in the city of Buenos Aires, Argentina. Results A total of 71 patients were included (mean age 34 years, 62% males). Seventy seven percent of tumors were low grade, with average extent of resection reaching 94% of preoperative volumetric assessment. At six months follow up, 81.7% of patients presented no motor or language deficit.Further analysis showed that having a positive mapping did not have a negative impact in the extent of resection, but was associated with short term postoperative motor and language deficits, among other variables, with later improvement. Conclusion Awake surgery for gliomas is a safe procedure, with the proper training. In this study it was observed that guiding the resection by negative mapping did not worsen the results and that positive subcortical mapping correlated with short term postoperative neurological deficits with posterior improvement within six months in most cases.
Collapse
Affiliation(s)
| | - Mauro Ruella
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| | | | - Greta Keller
- Department of Cognitive Neurology, Neuropsychology and Neuropsychiatry, Fleni, Buenos Aires, Argentina
| | - Darío Savini
- Department of Neurophysiology, Fleni, Buenos Aires, Argentina
| | - Andrés Cervio
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| |
Collapse
|
9
|
Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of Green Synthesized Metal Nanoparticles - a Review. Biol Trace Elem Res 2024; 202:360-386. [PMID: 37046039 PMCID: PMC10097525 DOI: 10.1007/s12011-023-03645-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.
Collapse
Affiliation(s)
| | - Hary Razafindralambo
- ProBioLab, Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Liège, Belgium
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux AgroBio Tech/Université de Liège, Gembloux, Belgium, University of Liege, Liège, Belgium
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, 641028, Tamil Nadu, India
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
10
|
Zhang Z, Liu S. The interaction between ASF1B and TLK1 promotes the malignant progression of low-grade glioma. Ann Med 2023; 55:1111-1122. [PMID: 36947060 PMCID: PMC10035952 DOI: 10.1080/07853890.2023.2169751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
AIM Low-grade glioma (LGG), which is the second most frequent adult brain malignancy, severely threatens patients' health and has a high recurrence rate. Histone H3/H4 chaperone anti-silencing function 1 B (ASF1B) has a tight association with the initiation and development of tumours. The expression and regulation mechanism of ASF1B in LGG were discussed. METHODS ASF1B expression in LGG patients as well as the association of ASF1B with overall survival and disease-free survival of LGG patients were predicted by GEPIA database. The independent prognostic value of ASF1B in LGG patients was investigated by TCGA database. RT-qPCR, together with western blot was applied for the assessment of ASF1B in LGG cell lines. After ASF1B expression was inhibited, CCK8 and colony formation assays judged cell proliferation. Flow cytometry analysis and TUNEL assay appraised cell cycle as well as apoptosis. Cell migratory and invasive capacities were measured by wound healing as well as Transwell assays. Western blot tested the expression of proliferation-, cycle-, apoptosis-, and metastasis-associated proteins. STRING and GeneMANIA database predicted the relationship between ASF1B and tousled-like kinase 1 (TLK1). ChIP assay testified the affinity of ASF1B with TLK1. Subsequently, TLK1 was overexpressed and ASF1B expression interfered, and the functional assays were executed. RESULTS ASF1B was discovered to be increased in LGG tissues and cells and indicates an unfavourable prognosis for LGG patients. ASF1B was not an independent prognostic factor for LGG. ASF1B deficiency obstructed the proliferation, cell cycle as well as metastasis of LGG cells, and induced cell death, which might be realized through the interaction with TLK1. CONCLUSION The interaction between ASF1B and TLK1 promoted the malignant progression of LGG.Key messagesTLK1 interacts with ASF1B.Interference with ASF1B inhibits the proliferative, invasive and migratory capabilities and induces the cycle arrest, along with the apoptosis of LGG cells.The interaction between ASF1B and TLK1 promotes the malignant progression of LGG.
Collapse
Affiliation(s)
- Zifa Zhang
- Neurosurgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, P. R. China
- Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, P. R. China
| | - Shuming Liu
- Emergency Department, Taiyuan People's Hospital, Taiyuan, Shanxi, P. R. China
| |
Collapse
|
11
|
Zheng H, Zhao Y, Zhou H, Tang Y, Xie Z. The Comprehensive Analysis of m6A-Associated Anoikis Genes in Low-Grade Gliomas. Brain Sci 2023; 13:1311. [PMID: 37759912 PMCID: PMC10527396 DOI: 10.3390/brainsci13091311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The relationship between N6-methyladenosine (m6A) regulators and anoikis and their effects on low-grade glioma (LGG) is not clear yet. The TCGA-LGG cohort, mRNAseq 325 dataset, and GSE16011 validation set were separately obtained via the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Altas (CGGA), and Gene Expression Omnibus (GEO) databases. In total, 27 m6A-related genes (m6A-RGs) and 508 anoikis-related genes (ANRGs) were extracted from published articles individually. First, differentially expressed genes (DEGs) between LGG and normal samples were sifted out by differential expression analysis. DEGs were respectively intersected with m6A-RGs and ANRGs to acquire differentially expressed m6A-RGs (DE-m6A-RGs) and differentially expressed ANRGs (DE-ANRGs). A correlation analysis of DE-m6A-RGs and DE-ANRGs was performed to obtain DE-m6A-ANRGs. Next, univariate Cox and least absolute shrinkage and selection operator (LASSO) were performed on DE-m6A-ANRGs to sift out risk model genes, and a risk score was gained according to them. Then, gene set enrichment analysis (GSEA) was implemented based on risk model genes. After that, we constructed an independent prognostic model and performed immune infiltration analysis and drug sensitivity analysis. Finally, an mRNA-miRNA-lncRNA regulatory network was constructed. There were 6901 DEGs between LGG and normal samples. Six DE-m6A-RGs and 214 DE-ANRGs were gained through intersecting DEGs with m6A-RGs and ANRGs, respectively. A total of 149 DE-m6A-ANRGs were derived after correlation analysis. Four genes, namely ANXA5, KIF18A, BRCA1, and HOXA10, composed the risk model, and they were involved in apoptosis, fatty acid metabolism, and glycolysis. The age and risk scores were finally sifted out to construct an independent prognostic model. Activated CD4 T cells, gamma delta T cells, and natural killer T cells had the largest positive correlations with risk model genes, while activated B cells were significantly negatively correlated with KIF18A and BRCA1. AT.9283, EXEL.2280, Gilteritinib, and Pracinostat had the largest correlation (absolute value) with a risk score. Four risk model genes (mRNAs), 12 miRNAs, and 21 lncRNAs formed an mRNA-miRNA-lncRNA network, containing HOXA10-hsa-miR-129-5p-LINC00689 and KIF18A-hsa-miR-221-3p-DANCR. Through bioinformatics, we constructed a prognostic model of m6A-associated anoikis genes in LGG, providing new ideas for research related to the prognosis and treatment of LGG.
Collapse
Affiliation(s)
| | | | | | | | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 404100, China; (H.Z.); (Y.Z.); (H.Z.); (Y.T.)
| |
Collapse
|
12
|
Qin H, Abulaiti A, Maimaiti A, Abulaiti Z, Fan G, Aili Y, Ji W, Wang Z, Wang Y. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J Transl Med 2023; 21:588. [PMID: 37660060 PMCID: PMC10474752 DOI: 10.1186/s12967-023-04468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation. METHODS We employed a robust computational framework to investigate the relationship between mitochondrial function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using machine learning models that exhibited optimal performance. RESULTS The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive performance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and metabolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even following adjustment for potential confounding factors, surpassing established clinical models in predictive strength. CONCLUSION Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy interventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes that present further prospects for future investigations into the role of PCD within mitochondrial function.
Collapse
Affiliation(s)
- Hu Qin
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Zulihuma Abulaiti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Guofeng Fan
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Yirizhati Aili
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Wenyu Ji
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China.
| |
Collapse
|
13
|
Bianconi A, Bonada M, Zeppa P, Colonna S, Tartara F, Melcarne A, Garbossa D, Cofano F. How Reliable Is Fluorescence-Guided Surgery in Low-Grade Gliomas? A Systematic Review Concerning Different Fluorophores. Cancers (Basel) 2023; 15:4130. [PMID: 37627158 PMCID: PMC10452554 DOI: 10.3390/cancers15164130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Fluorescence-guided surgery has been increasingly used to support glioma surgery with the purpose of obtaining a maximal safe resection, in particular in high-grade gliomas, while its role is less definitely assessed in low-grade gliomas. METHODS A systematic review was conducted. 5-aminolevulinic acid, sodium fluorescein, indocyanine green and tozuleristide were taken into account. The main considered outcome was the fluorescence rate, defined as the number of patients in whom positive fluorescence was detected out of the total number of patients. Only low-grade gliomas were considered, and data were grouped according to single fluorophores. RESULTS 16 papers about 5-aminolevulinic acid, 4 about sodium fluorescein, 2 about indocyanine green and 1 about tozuleristide were included in the systematic review. Regarding 5-aminolevulinic acid, a total of 467 low-grade glioma patients were included, and fluorescence positivity was detected in 34 out of 451 Grade II tumors (7.3%); while in Grade I tumors, fluorescence positivity was detected in 9 out of 16 cases. In 16 sodium fluorescein patients, seven positive fluorescent cases were detected. As far as indocyanine is concerned, two studies accounting for six patients (three positive) were included, while for tozuleristide, a single clinical trial with eight patients (two positive) was retrieved. CONCLUSIONS The current evidence does not support the routine use of 5-aminolevulinic acid or sodium fluorescein with a standard operating microscope because of the low fluorescence rates. New molecules, including tozuleristide, and new techniques for fluorescence detection have shown promising results; however, their use still needs to be clinically validated on a large scale.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Marta Bonada
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Pietro Zeppa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Stefano Colonna
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Fulvio Tartara
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Diego Garbossa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Fabio Cofano
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
- Humanitas Gradenigo, 10100 Turin, Italy
| |
Collapse
|
14
|
Jiang YT, Wang TC, Zhang W. Preoperative Systemic Immune-Inflammation Index is a Potential Biomarker in Adult Patients with High-Grade Gliomas Undergoing Radical Resection. J Inflamm Res 2023; 16:3479-3490. [PMID: 37608884 PMCID: PMC10440602 DOI: 10.2147/jir.s423488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Background Increasing evidence has highlighted that systemic immune-inflammation index (SII), a recently developed prognostic biomarker that utilizes peripheral platelet, lymphocyte and neutrophil counts, is associated with unfavorable prognosis in various tumors. Nevertheless, the prognostic significance of SII in high-grade gliomas patients undergoing radical resection remains unclear. Therefore, the present study aimed to assess the potential of SII as a prognostic biomarker in this patient population. Methods A total of 111 adult patients with high-grade gliomas who underwent radical resection were consecutively enrolled in this investigation. The study involved the categorization of patients into high and low SII groups using predetermined cut-off values. Subsequently, forward stepwise logistic regression was employed to identify autonomous predictors for early gliomas recurrence. To mitigate the impact of confounding factors, a propensity score matching (PSM) analysis was performed between high and low SII patients. Finally, the Kaplan-Meier approach was utilized to compare the progression-free survival (PFS) and overall survival (OS) of the two groups. Results The study involved the categorization of patients into two groups based on their SII levels, namely high SII (> 604.8) and low SII (≤ 604.8) groups. Forward stepwise logistic regression revealed that high SII (p < 0.001) and tumor size ≥ 50 mm (p < 0.001) were significantly related to early recurrence of gliomas. Furthermore, the results indicate that PFS and OS were significantly shorter in the high SII group compared to the low SII group, both before and after PSM (p < 0.05). Conclusion Preoperative biomarker SII can serve as a prognostic biomarker for early recurrence and prognosis in patients with high-grade gliomas undergoing radical resection. Furthermore, the combination of tumor size and SII demonstrates a robust predictive capacity for early recurrence and prognosis in this patient population.
Collapse
Affiliation(s)
- Yu-Ting Jiang
- Department of Radiology, Brain Hospital of Hunan Province, the School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Tian-Cheng Wang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Wei Zhang
- Department of Radiology, Brain Hospital of Hunan Province, the School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
15
|
Hey G, Rao R, Carter A, Reddy A, Valle D, Patel A, Patel D, Lucke-Wold B, Pomeranz Krummel D, Sengupta S. Ligand-Gated Ion Channels: Prognostic and Therapeutic Implications for Gliomas. J Pers Med 2023; 13:jpm13050853. [PMID: 37241023 DOI: 10.3390/jpm13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are common primary brain malignancies that remain difficult to treat due to their overall aggressiveness and heterogeneity. Although a variety of therapeutic strategies have been employed for the treatment of gliomas, there is increasing evidence that suggests ligand-gated ion channels (LGICs) can serve as a valuable biomarker and diagnostic tool in the pathogenesis of gliomas. Various LGICs, including P2X, SYT16, and PANX2, have the potential to become altered in the pathogenesis of glioma, which can disrupt the homeostatic activity of neurons, microglia, and astrocytes, further exacerbating the symptoms and progression of glioma. Consequently, LGICs, including purinoceptors, glutamate-gated receptors, and Cys-loop receptors, have been targeted in clinical trials for their potential therapeutic benefit in the diagnosis and treatment of gliomas. In this review, we discuss the role of LGICs in the pathogenesis of glioma, including genetic factors and the effect of altered LGIC activity on the biological functioning of neuronal cells. Additionally, we discuss current and emerging investigations regarding the use of LGICs as a clinical target and potential therapeutic for gliomas.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan Rao
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ashley Carter
- Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daisy Valle
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anjali Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Drashti Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 23608, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Soma Sengupta
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
16
|
Liu KQ, Rangwala SD, Attenello FJ. Commentary: Awake Microsurgical Resection of a Motor Cortex Glioma With Cortical and Subcortical Motor Mapping, Image Guidance, and Augmented Reality. Oper Neurosurg (Hagerstown) 2023; 24:e234-e235. [PMID: 36701565 DOI: 10.1227/ons.0000000000000574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Kristie Q Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
17
|
Cheng X, Liu Z, Liang W, Zhu Q, Wang C, Wang H, Zhang J, Li P, Gao Y. ECM2, a prognostic biomarker for lower grade glioma, serves as a potential novel target for immunotherapy. Int J Biochem Cell Biol 2023; 158:106409. [PMID: 36997057 DOI: 10.1016/j.biocel.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Extracellular matrix protein 2 (ECM2), which regulates cell proliferation and differentiation, has recently been reported as a prognostic indicator for multiple cancers, but its value in lower grade glioma (LGG) remains unknown. In this study, LGG transcriptomic data of 503 cases in The Cancer Genome Atlas (TCGA) database and 403 cases in The Chinese Glioma Genome Atlas (CGGA) database were collected to analyze ECM2 expression patterns and the relationship with clinical characteristics, prognosis, enriched signaling pathways, and immune-related markers. In addition, a total of 12 laboratory samples were used for experimental validation. Wilcoxon or Kruskal-Wallis tests demonstrated highly expressed ECM2 in LGG was positively associated with malignant histological features and molecular features such as recurrent LGG and isocitrate dehydrogenase (IDH) wild-type. Also, Kaplan-Meier (KM) curves proved high ECM2 expression could predict shorter overall survival in LGG patients, as multivariate analysis and meta-analysis claimed ECM2 was a deleterious factor for LGG prognosis. In addition, the enrichment of immune-related pathways for ECM2, for instance JAK-STAT pathway, was obtained by Gene Set Enrichment Analysis (GSEA) analysis. Furthermore, positive relationships between ECM2 expression with immune cells infiltration and cancer-associated fibroblasts (CAFs), iconic markers (CD163), and immune checkpoints (CD274, encoding PD-L1) were proved by Pearson correlation analysis. Finally, laboratory experiments of RT-qPCR and immunohistochemistry showed high expression of ECM2, as well as CD163 and PD-L1 in LGG samples. This study identifies ECM2, for the first time, as a subtype marker and prognostic indicator for LGG. ECM2 could also provide a reliable guarantee for further personalized therapy, synergizing with tumor immunity, to break through the current limitations and thus reinvigorating immunotherapy for LGG. AVAILABILITY OF DATA AND MATERIALS: Raw data from all public databases involved in this study are stored in the online repository (chengMD2022/ECM2 (github.com)).
Collapse
|
18
|
Wangaryattawanich P, Rutman AM, Petcharunpaisan S, Mossa-Basha M. Incidental findings on brain magnetic resonance imaging (MRI) in adults: a review of imaging spectrum, clinical significance, and management. Br J Radiol 2023; 96:20220108. [PMID: 35522780 PMCID: PMC9975529 DOI: 10.1259/bjr.20220108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Utilization of brain MRI has dramatically increased in recent decades due to rapid advancement in imaging technology and improving accessibility. As a result, radiologists increasingly encounter findings incidentally discovered on brain MRIs which are performed for unrelated indications. Some of these findings are clinically significant, necessitating further investigation or treatment and resulting in increased costs to healthcare systems as well as increased patient anxiety. Moreover, management of these incidental findings poses a significant challenge for referring physicians. Therefore, it is important for interpreting radiologists to know the prevalence, clinical consequences, and appropriate management of these findings. There is a wide spectrum of incidental findings on brain MRI such as asymptomatic brain infarct, age-related white matter changes, microhemorrhages, intracranial tumors, intracranial cystic lesions, and anatomic variants. This article provides a narrative review of important incidental findings encountered on brain MRI in adults with a focus on prevalence, clinical implications, and recommendations on management of these findings based on current available data.
Collapse
Affiliation(s)
| | | | | | - Mahmud Mossa-Basha
- Department of Radiology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Isocitrate-dehydrogenase-mutant lower grade glioma in elderly patients: treatment and outcome in a molecularly characterized contemporary cohort. J Neurooncol 2023; 161:605-615. [PMID: 36648586 PMCID: PMC9992027 DOI: 10.1007/s11060-022-04230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/24/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Lower-grade glioma (LGG) is rare among patients above the age of 60 ("elderly"). Previous studies reported poor outcome, likely due to the inclusion of isocitrate dehydrogenase (IDH) wildtype astrocytomas and advocated defensive surgical and adjuvant treatment. This study set out to question this paradigm analyzing a contemporary cohort of patients with IDH mutant astrocytoma and oligodendroglioma WHO grade 2 and 3. METHODS Elderly patients treated in our department for a supratentorial, hemispheric LGG between 2009 and 2019 were retrospectively analyzed for patient-, tumor- and treatment-related factors and progression-free survival (PFS) and compared to patients aged under 60. Inclusion required the availability of subtype-defining molecular data and pre- and post-operative tumor volumes. RESULTS 207 patients were included, among those 21 elderlies (10%). PFS was comparable between elderly and younger patients (46 vs. 54 months; p = 0.634). Oligodendroglioma was more common in the elderly (76% vs. 46%; p = 0.011). Most patients underwent tumor resection (elderly: 81% vs. younger: 91%; p = 0.246) yielding comparable residual tumor volumes (elderly: 7.8 cm3; younger: 4.1 cm3; p = 0.137). Adjuvant treatment was administered in 76% of elderly and 61% of younger patients (p = 0.163). Uni- and multi-variate survival analyses identified a tumor crossing the midline, surgical strategy, and pre- and post-operative tumor volumes as prognostic factors. CONCLUSION Elderly patients constitute a small fraction of molecularly characterized LGGs. In contrast to previous reports, favorable surgical and survival outcomes were achieved in our series comparable to those of younger patients. Thus, intensified treatment including maximal safe resection should be advocated in elderly patients whenever feasible.
Collapse
|
20
|
He Y, Lin Z, Tan S. Identification of prognosis-related gene features in low-grade glioma based on ssGSEA. Front Oncol 2022; 12:1056623. [PMID: 36591509 PMCID: PMC9795048 DOI: 10.3389/fonc.2022.1056623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Low-grade gliomas (LGG) are commonly seen in clinical practice, and the prognosis is often poor. Therefore, the determination of immune-related risk scores and immune-related targets for predicting prognoses in patients with LGG is crucial. A single-sample gene set enrichment analysis (ssGSEA) was performed on 22 immune gene sets to calculate immune-based prognostic scores. The prognostic value of the 22 immune cells for predicting overall survival (OS) was assessed using the least absolute shrinkage and selection operator (LASSO) and univariate and multivariate Cox analyses. Subsequently, we constructed a validated effector T-cell risk score (TCRS) to identify the immune subtypes and inflammatory immune features of LGG patients. We divided an LGG patient into a high-risk-score group and a low-risk-score group based on the optimal cutoff value. Kaplan-Meier survival curve showed that patients in the low-risk-score group had higher OS. We then identified the differentially expressed genes (DEGs) between the high-risk-score group and low-risk-score group and obtained 799 upregulated genes and 348 downregulated genes. The analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) show that DEGs were mainly concentrated in immune-related processes. In order to further explore the immune-related genes related to prognosis, we constructed a protein-protein interaction (PPI) network using Cytoscape and then identified the 50 most crucial genes. Subsequently, nine DEGs were found to be significantly associated with OS based on univariate and multivariate Cox analyses. It was further confirmed that CD2, SPN, IL18, PTPRC, GZMA, and TLR7 were independent prognostic factors for LGG through batch survival analysis and a nomogram prediction model. In addition, we used an RT-qPCR assay to validate the bioinformatics results. The results showed that CD2, SPN, IL18, PTPRC, GZMA, and TLR7 were highly expressed in LGG. Our study can provide a reference value for the prediction of prognosis in LGG patients and may help in the clinical development of effective therapeutic agents.
Collapse
Affiliation(s)
- Yuanzhi He
- Department of Neurosurgery, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Zhangping Lin
- Clinical Laboratory, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Sanyang Tan
- Clinical Laboratory, Haikou Hospital of, The Maternal and Child Health, Haikou, Hainan, China,*Correspondence: Sanyang Tan,
| |
Collapse
|
21
|
Bennett C, González M, Tapia G, Riveros R, Torres F, Loyola N, Veloz A, Chabert S. Cortical mapping in glioma surgery: correlation of fMRI and direct electrical stimulation with Human Connectome Project parcellations. Neurosurg Focus 2022; 53:E2. [PMID: 36455268 DOI: 10.3171/2022.9.focus2283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Noninvasive brain mapping with functional MRI (fMRI) and mapping with direct electrical stimulation (DES) are important tools in glioma surgery, but the evidence is inconclusive regarding the sensitivity and specificity of fMRI. The Human Connectome Project (HCP) proposed a new cortical parcellation that has not been thoroughly tested in a clinical setting. The main goal of this study was to evaluate the correlation of fMRI and DES mapping with HCP areas in a clinical setting, and to evaluate the performance of fMRI mapping in motor and language tasks in patients with glioma, using DES as the gold standard. METHODS Forty patients with supratentorial gliomas were examined using preoperative fMRI and underwent awake craniotomy with DES. Functional activation maps were visualized on a 3D representation of the cortex, classified according to HCP areas, and compared with surgical mapping. RESULTS Functional MRI was successful in identifying language and motor HCP areas in most cases, including novel areas such as 55b and the superior longitudinal fasciculus (SLF). Functional MRI had a sensitivity and specificity of 100% and 71%, respectively, for motor function in HCP area 4. Sensitivity and specificity were different according to the area and fMRI protocol; i.e., semantic protocols performed better in Brodmann area (BA) 55b/peri-sylvian language areas with 100% sensitivity and 20% specificity, and word production protocols in BAs 44 and 45 with 70% sensitivity and 80% specificity. Some compensation patterns could be observed, such as motor activation of the postcentral gyrus in precentral gliomas. CONCLUSIONS HCP areas can be detected in clinical scenarios of glioma surgery. These areas appear relatively stable across patients, but compensation patterns seem to differ, allowing occasional resection of activating areas. Newly described areas such as 55b and SLF can act as critical areas in language networks. Surgical planning should account for these parcellations.
Collapse
Affiliation(s)
- Carlos Bennett
- 1Department of Neurosurgery, Hospital Carlos van Buren, Valparaíso.,2School of Medicine, Universidad de Valparaíso
| | - Matías González
- 1Department of Neurosurgery, Hospital Carlos van Buren, Valparaíso.,2School of Medicine, Universidad de Valparaíso
| | - Gisella Tapia
- 2School of Medicine, Universidad de Valparaíso.,3Department of Neurology, Hospital Carlos van Buren, Valparaíso
| | - Rodrigo Riveros
- 2School of Medicine, Universidad de Valparaíso.,4Department of Radiology, Hospital Carlos van Buren, Valparaíso
| | - Francisco Torres
- 2School of Medicine, Universidad de Valparaíso.,4Department of Radiology, Hospital Carlos van Buren, Valparaíso
| | - Nicole Loyola
- 1Department of Neurosurgery, Hospital Carlos van Buren, Valparaíso.,2School of Medicine, Universidad de Valparaíso
| | - Alejandro Veloz
- 5School of Biomedical Engineering, Universidad de Valparaíso.,6Centro de Investigación y Desarrollo en Ingeniería en Salud CINGS, Universidad de Valparaíso
| | - Stéren Chabert
- 5School of Biomedical Engineering, Universidad de Valparaíso.,8Instituto Milenio Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
22
|
Scherschinski L, Jubran JH, Shaftel KA, Furey CG, Farhadi DS, Benner D, Hendricks BK, Smith KA. Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Management of Low-Grade Gliomas and Radiation Necrosis: A Single-Institution Case Series. Brain Sci 2022; 12:brainsci12121627. [PMID: 36552087 PMCID: PMC9775146 DOI: 10.3390/brainsci12121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) has emerged as a minimally invasive treatment modality for ablation of low-grade glioma (LGG) and radiation necrosis (RN). OBJECTIVE To evaluate the efficacy, safety, and survival outcomes of patients with radiographically presumed recurrent or newly diagnosed LGG and RN treated with LITT. METHODS The neuro-oncological database of a quaternary center was reviewed for all patients who underwent LITT for management of LGG between 1 January 2013 and 31 December 2020. Clinical data including demographics, lesion characteristics, and clinical and radiographic outcomes were collected. Kaplan-Meier analyses comprised overall survival (OS) and progression-free survival (PFS). RESULTS Nine patients (7 men, 2 women; mean [SD] age 50 [16] years) were included. Patients underwent LITT at a mean (SD) of 11.6 (8.5) years after diagnosis. Two (22%) patients had new lesions on radiographic imaging without prior treatment. In the other 7 patients, all (78%) had surgical resection, 6 (67%) had intensity-modulated radiation therapy and chemotherapy, respectively, and 4 (44%) had stereotactic radiosurgery. Two (22%) patients had lesions that were wild-type IDH1 status. Volumetric assessment of preoperative T1-weighted contrast-enhancing and T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences yielded mean (SD) lesion volumes of 4.1 (6.5) cm3 and 26.7 (27.9) cm3, respectively. Three (33%) patients had evidence of radiographic progression after LITT. The pooled median (IQR) PFS for the cohort was 52 (56) months, median (IQR) OS after diagnosis was 183 (72) months, and median (IQR) OS after LITT was 52 (60) months. At the time of the study, 2 (22%) patients were deceased. CONCLUSIONS LITT is a safe and effective treatment option for management of LGG and RN, however, there may be increased risk of permanent complications with treatment of deep-seated subcortical lesions.
Collapse
Affiliation(s)
- Lea Scherschinski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +1-602-693-5883
| | - Jubran H. Jubran
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kelly A. Shaftel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Charuta G. Furey
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Dara S. Farhadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Dimitri Benner
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Benjamin K. Hendricks
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kris A. Smith
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
23
|
Yan Z, Wang J, Dong Q, Zhu L, Lin W, Jiang X. Predictors of tumor progression of low-grade glioma in adult patients within 5 years follow-up after surgery. Front Surg 2022; 9:937556. [PMID: 36277286 PMCID: PMC9581165 DOI: 10.3389/fsurg.2022.937556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022] Open
Abstract
Background Glioma originates from glial cells in the brain and is the most common primary intracranial tumor. This study intends to use a retrospective analysis to explore the factors that can predict tumor progression in adult low-grade gliomas, namely WHO II grade patients, within 5 years after surgery. Methods Patients with WHO grade II glioma who were surgically treated in our hospital from February 2011 to May 2017 were included. According to the inclusion and exclusion criteria, 252 patients were included in the final analysis. According to the results of the 5-year follow-up (including survival and imaging review results), patients were divided into progression-free group and progression group. Univariate and multivariate analysis were conducted to investigate the related factors of tumor progression during the 5-year follow-up. Results The results of the 5-year follow-up showed that 111 (44.0%) cases had no progress (progression free group, PFG), 141 (56.0%) cases had progress (progression group, PG), of which 43 (30.5%) cases were operated again, 37 cases (26.2%) received non-surgical treatments. There were 26 (10.3%) all-cause deaths, and 21 (8.3%) tumor-related deaths. Univariate and multivariate analysis showed that age >45 years old (OR = 1.35, 95% CI, 1.07-3.19, P = 0.027), partial tumor resection (OR = 1.66, 95% CI, 1.15-3.64, P = 0.031), tumor diameter >3 cm (OR = 1.52, 95% CI, 1.14-4.06, P = 0.017) and no radiotherapy (OR = 1.37, 95% CI, 1.12-2.44, P = 0.039) were independent predictors of the progression of tumor during the 5-year follow-up period. Conclusion Age >45 years old, partial tumor resection, tumor diameter >3 cm, no radiotherapy are predictors for tumor progression for glioma patients after surgery.
Collapse
Affiliation(s)
| | | | | | | | - Wei Lin
- Correspondence: Xiaofan Jiang Wei Lin
| | | |
Collapse
|
24
|
Zhao R, Zhuge Y, Camphausen K, Krauze AV. Machine learning based survival prediction in Glioma using large-scale registry data. Health Informatics J 2022; 28:14604582221135427. [PMID: 36264067 PMCID: PMC10673681 DOI: 10.1177/14604582221135427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Gliomas are the most common central nervous system tumors exhibiting poor clinical outcomes. The ability to estimate prognosis is crucial for both patients and providers in order to select the most appropriate treatment. Machine learning (ML) allows for sophisticated approaches to survival prediction using real world clinical parameters needed to achieve superior predictive accuracy. We employed Cox Proportional hazards (CPH) model, Support Vector Machine (SVM) model, Random Forest (RF) model in a large glioma dataset (3462 patients, diagnosed 2000-2018) to explore the most optimal approach to survival prediction. Features employed were age, sex, surgical resection status, tumor histology and tumor site, administration of radiation therapy (RT) and chemotherapy status. Concordance index (c-index) was employed to assess the accuracy of survival time prediction. All three models performed well with prediction accuracy (CI 0.767, 0.771, 0.57 for CPH, SVM, RF models respectively) with the best performance achieved when incorporating RT and chemotherapy administration status which emerged as key predictive features. Within the subset of glioblastoma patients, similar prediction accuracy was achieved. These findings should prompt stricter clinician oversight over registry data accuracy through quality assurance as we move towards meaningful predictive ability using ML approaches in glioma.
Collapse
Affiliation(s)
| | | | | | - Andra V Krauze
- 3421National Cancer Institute, NIH, USA; 184934BC Cancer Surrey, Canada
| |
Collapse
|
25
|
Pérez IF, Valverde D, Valverde CF, Iglesias JB, Silva MJV, Quintela ML, Meléndez B. An analysis of prognostic factors in a cohort of low-grade gliomas and degree of consistency between RTOG and EORTC scores. Sci Rep 2022; 12:16433. [PMID: 36180501 PMCID: PMC9525658 DOI: 10.1038/s41598-022-20429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their rarity and heterogeneity and despite the introduction of molecular features in the current WHO classification, clinical criteria such as those from the European Organization for Research and Treatment of Cancer (EORTC) and the Radiation Therapy Oncology Group (RTOG) are still being used to make treatment decisions in low-grade gliomas (LGG). Patients with diffuse low-grade glioma treated at our institution between 2002 and 2018 were analyzed, retrieving and assessing the degree of consistency between the EORTC and RTOG criteria, as well as the isocitrate dehydrogenase 1 and 2 (IDH) gene mutational status. Likewise, multivariate analyses were performed to ascertain the superiority of any of the factors over the others. One hundred and two patients were included. The degree of consistency between the RTOG and EORTC criteria was 71.6% (K = 0.426; p = 0.0001). Notably, 51.7% of those assigned to low risk by the EORTC were classified as high risk according to the RTOG classification. In multivariate analysis, only complete resection, age > 40 years, size and IDH mutation status were independently correlated with OS. When the RTOG and EORTC scores were entered into the model, only the EORTC model was independently associated with mortality. The degree of consistency between the EORT and RTOG criteria is low. Therefore, there is a need to integrate clinical-molecular scores to improve treatment decisions in LGG.
Collapse
Affiliation(s)
- Isaura Fernández Pérez
- Department of Medical Oncology, University Hospital Complex of Vigo, Vigo, Spain. .,Translational Oncology Research Group, Galicia Sur Health Research Institute (IISGS), Vigo, Spain.
| | - Diana Valverde
- Rare Disease Research Group, Galicia Sur Health Research Institute (IISGS), Faculty of Biology, University of Vigo, Vigo, Spain
| | | | - Jenifer Brea Iglesias
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - María José Villanueva Silva
- Department of Medical Oncology, University Hospital Complex of Vigo, Vigo, Spain.,Translational Oncology Research Group, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - Martín Lázaro Quintela
- Department of Medical Oncology, University Hospital Complex of Vigo, Vigo, Spain.,Translational Oncology Research Group, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - Bárbara Meléndez
- Molecular Pathology Research Unit, Department of Pathology, University Hospital of Toledo, Toledo, Spain
| |
Collapse
|
26
|
Jiang W, He Z, Jiang W, Du J, Yuan L, Luo C, Li X, Xu F. Construction of immune cell infiltration protein network based on clinical low grade glioma cases. Front Oncol 2022; 12:956348. [PMID: 36203440 PMCID: PMC9530812 DOI: 10.3389/fonc.2022.956348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Many researchers have studied low-grade glioma and the immune microenvironment have been studied by many researchers. Recent studies suggest that macrophages and dendritic cells trigger part of the local immune dysregulation in the tumor microenvironment, and they have been polarized into a mixed pro-inflammatory and immunosuppressive phenotype. It is suggested that the degree of immune infiltration is related to the survival, therapeutic effect, and prognosis of patients. This opens up new avenues for cancer treatment. On the basis of immune infiltration degree, a protein interaction network (PIN) and a prognosis model were established, and we chose the top 20 pathways from enrichment analysis to provide potential targets for glioma clinical treatment.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Zijian He
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Weizhong Jiang
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiarui Du
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Lutao Yuan
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Cong Luo
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiang Li
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Fulin Xu, ; Xiang Li,
| | - Fulin Xu
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Fulin Xu, ; Xiang Li,
| |
Collapse
|
27
|
Hosmann A, Jaber M, Roetzer-Pejrimovsky T, Timelthaler G, Borkovec M, Kiesel B, Wadiura LI, Millesi M, Mercea PA, Phillips J, Hervey-Jumper S, Berghoff AS, Hainfellner JA, Berger MS, Stummer W, Widhalm G. CD34 microvascularity in low-grade glioma: correlation with 5-aminolevulinic acid fluorescence and patient prognosis in a multicenter study at three specialized centers. J Neurosurg 2022; 138:1281-1290. [PMID: 36115057 DOI: 10.3171/2022.7.jns22921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Early markers are urgently needed in low-grade glioma (LGG) evaluation to rapidly estimate the individual patient's prognosis and to determine the optimal postoperative management. Generally, visible 5-aminolevulinic acid (5-ALA) fluorescence is present in only a few LGGs. Recently, the authors identified visible 5-ALA fluorescence as a powerful intraoperative marker for unfavorable outcome in LGG treatment. However, its precise histopathological correlate is unclear. Neoangiogenesis represents a crucial event in tumor evolution, and CD34 is an established marker for vascular endothelial progenitors potentially indicating tumor progression. The aim of this study was thus to correlate 5-ALA fluorescence and CD34 microvascularity as well as to investigate the prognostic value of CD34 in a large series of LGGs. METHODS In this retrospective study including 3 specialized centers, patients with histopathologically confirmed isocitrate dehydrogenase-mutated LGGs (WHO grade II) receiving 5-ALA prior to resection were included. During surgery, the presence of visible fluorescence was analyzed and one representative tumor sample from the area with the maximum fluorescence effect (tumor with focal fluorescence or nonfluorescing tumor) was selected for each LGG. All fluorescing or nonfluorescing tumor samples were stained for CD34 and semiquantitatively analyzed for microvascular proliferation patterns (physiological vessels, branching capillaries, or microvessel clusters) as well as automatically quantified for CD34 microvessel density (MVD) by standardized histomorphometry software. These semiquantitative/quantitative CD34 data were correlated to the fluorescence status and patient outcome including progression-free survival (PFS), malignant transformation-free survival (MTFS), and overall survival (OS). RESULTS In a total of 86 LGGs, visible fluorescence was found during surgery in 13 (15%) cases. First, the semiquantitative CD34 score significantly correlated with intraoperative fluorescence (p = 0.049). Accordingly, the quantitative CD34 MVD was significantly higher in tumors showing fluorescence (p = 0.03). Altogether, the semiquantitative CD34 score showed a strong correlation with quantitative CD34 MVD (p < 0.001). At a mean follow-up of 5.4 ± 2.6 years, microvessel clusters in semiquantitative analysis were a prognostic marker for poor PFS (p = 0.01) and MTFS (p = 0.006), but not OS (p = 0.28). Finally, quantitative CD34 MVD > 10 vessels/mm2 was a prognostic marker for poor PFS (p = 0.01), MTFS (p = 0.008), and OS (p = 0.049). CONCLUSIONS The data indicate that CD34 microvascularity is associated with intraoperative 5-ALA fluorescence and outcomes in patients with LGG. Thus, visible fluorescence in LGGs might indicate increased CD34 microvascularity, serving as an early prognostic marker for unfavorable patient outcome that is already available during surgery.
Collapse
Affiliation(s)
- Arthur Hosmann
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Mohammed Jaber
- 2Department of Neurosurgery, University Hospital Münster, Germany
| | - Thomas Roetzer-Pejrimovsky
- 3Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | | | - Martin Borkovec
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Barbara Kiesel
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Lisa I Wadiura
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Matthias Millesi
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Petra A Mercea
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Joanna Phillips
- 5Department of Pathology, University of California, San Francisco, California
| | - Shawn Hervey-Jumper
- 6Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Anna S Berghoff
- 7Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Johannes A Hainfellner
- 3Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Mitchel S Berger
- 6Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Walter Stummer
- 2Department of Neurosurgery, University Hospital Münster, Germany
| | - Georg Widhalm
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| |
Collapse
|
28
|
Yang MC, Wu D, Sun H, Wang LK, Chen XF. A Metabolic Plasticity-Based Signature for Molecular Classification and Prognosis of Lower-Grade Glioma. Brain Sci 2022; 12:brainsci12091138. [PMID: 36138874 PMCID: PMC9497112 DOI: 10.3390/brainsci12091138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Glioma is one of the major health problems worldwide. Biomarkers for predicting the prognosis of Glioma are still needed. Methods: The transcriptome data and clinic information on Glioma were obtained from the CGGA, TCGA, GDC, and GEO databases. The immune infiltration status in the clusters was compared. The genes with differential expression were identified, and a prognostic model was developed. Several assays were used to detect RPH3A’s role in Glioma cells, including CCK-8, colony formation, wound healing, and transwell migration assay. Results: Lower Grade Glioma (LGG) was divided into two clusters. The immune infiltration difference was observed between the two clusters. We screened for genes that differed between the two groups. WGCNA was used to construct a co-expressed network using the DEGs, and four co-expressed modules were identified, which are blue, green, grey, and yellow modules. High-risk patients have a lower overall survival rate than low-risk patients. In addition, the risk score is associated with histological subtypes. Finally, the role of RPH3A was detected. The overexpression of RPH3A in LGG cells can significantly inhibit cell proliferation and migration and regulate EMT-regulated proteins. Conclusion: Our study developed a metabolic-related model for the prognosis of Glioma cells. RPH3A is a potential therapeutic target for Glioma.
Collapse
Affiliation(s)
- Ming-Chun Yang
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Di Wu
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lian-Kun Wang
- Department of Neurology, Heilongjiang Province Hospital, Harbin 150001, China
| | - Xiao-Feng Chen
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
- Correspondence: ; Tel./Fax: +86-451-8555-5644
| |
Collapse
|
29
|
Mischkulnig M, Roetzer-Pejrimovsky T, Lötsch-Gojo D, Kastner N, Bruckner K, Prihoda R, Lang A, Martinez-Moreno M, Furtner J, Berghoff A, Woehrer A, Berger W, Widhalm G, Kiesel B. Heme Biosynthesis Factors and 5-ALA Induced Fluorescence: Analysis of mRNA and Protein Expression in Fluorescing and Non-fluorescing Gliomas. Front Med (Lausanne) 2022; 9:907442. [PMID: 35665365 PMCID: PMC9157484 DOI: 10.3389/fmed.2022.907442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The intraoperative visualization of adult-type diffuse gliomas with 5-aminolevulinic acid (5-ALA) induced fluorescence is widely used in the neurosurgical field. While visible 5-ALA induced fluorescence is found in the majority of high-grade gliomas, most low-grade gliomas lack visible fluorescence during surgery. Recently, the heme biosynthesis pathway was identified as crucial influencing factor for presence of visible fluorescence since it metabolizes 5-ALA to fluorescing Protoporphyrin IX (PpIX). However, the exact alterations within the heme biosynthesis pathway resulting in visible 5-ALA induced fluorescence in gliomas are still unclear. The aim of the present study was thus to compare the mRNA and protein expression of promising intramitochondrial heme biosynthesis enzymes/transporters in glioma tissue samples of different fluorescence behavior. Methods A total of 19 strongly fluorescing and 21 non-fluorescing tissue samples from neurosurgical adult-type diffuse gliomas (WHO grades II-IV) were included in the current analysis. In these samples, we investigated the mRNA expression by quantitative real time PCR and protein expression using immunohistochemistry of the intramitochondrial heme biosynthesis enzymes Coproporphyrinogen Oxidase (CPOX), Protoporphyrinogen Oxidase (PPOX), Ferrochelatase (FECH), and the transporter ATP-binding Cassette Subfamily B Member 2 (ABCG2). Results Regarding mRNA expression analysis, we found a significantly decreased ABCG2 expression in fluorescing specimens compared to non-fluorescing samples (p = 0.001), whereas no difference in CPOX, PPOX and FECH was present. With respect to protein expression, significantly higher levels of CPOX (p = 0.005), PPOX (p < 0.01) and FECH (p = 0.003) were detected in fluorescing samples. Similar to mRNA expression analysis, the protein expression of ABCG2 (p = 0.001) was significantly lower in fluorescing samples. Conclusion Distinct alterations of the analyzed heme biosynthesis factors were found primarily on protein level. Our data indicate that heme biosynthesis pathway activity in general is enhanced in fluorescing gliomas with upregulation of PpIX generating enzymes and decreased ABCG2 mediated PpIX efflux outweighing the also increased further metabolization of PpIX to heme. Intramitochondrial heme biosynthesis factors thus constitute promising pharmacological targets to optimize intraoperative 5-ALA fluorescence visualization of usually non-fluorescing tumors such as low-grade gliomas.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Thomas Roetzer-Pejrimovsky
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Nina Kastner
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Bruckner
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Romana Prihoda
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, University Hospital of St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | | | - Julia Furtner
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Anna Berghoff
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- *Correspondence: Barbara Kiesel,
| |
Collapse
|
30
|
Wang B, Ma Q, Wang X, Guo K, Liu Z, Li G. TGIF1 overexpression promotes glioma progression and worsens patient prognosis. Cancer Med 2022; 11:5113-5128. [PMID: 35569122 PMCID: PMC9761070 DOI: 10.1002/cam4.4822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
Transforming growth factor β-induced factor homeobox 1 (TGIF1) reportedly promotes the pathological processes of various malignant tumors. However, few studies have investigated the role of TGIF1 in gliomas. We aimed to explore the relationship between TGIF1 expression and the clinical characteristics of patients with glioma, including their overall survival. A total of thousands transcriptome datapoints were downloaded from public databases to determine the correlations between TGIF1 and various clinicopathological features using the Wilcoxon or Kruskal-Wallis tests. The Kaplan-Meier and Cox statistical methods were used to explore the prognostic significance of TGIF1. Gene set enrichment analysis (GSEA) was used to indirectly identify the pathological mechanisms modulated by TGIF1, and compounds that inhibit its expression were determined using a connectivity map (CMap). TGIF1 was significantly overexpressed in gliomas and was correlated with unfavorable prognostic factors and shorter overall survival. Cox analysis confirmed that TGIF1 expression was a significant predictor of poor prognosis in patients with glioma. GSEA revealed that the signaling pathways associated with TGIF1 expression in glioma included extracellular matrix receptor- and cell cycle-modulating proteins. CMap analysis showed that the small molecules scriptaid, torasemide, dexpropranolol, ipratropium bromide, and harmine were potential negative regulators of TGIF1. Finally, in vitro experiments demonstrated that knockdown of TGIF1 significantly inhibited the proliferation and invasion of glioma cell. Taken together, our study, which is the first to comprehensively analyze TGIF1 in gliomas, revealed it to be a novel oncogene in terms of its association with this disease. As such, TGIF1 may be a potential therapeutic target for individualized treatment of patients with glioma.
Collapse
Affiliation(s)
- Baoya Wang
- Department of Clinical Laboratory, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, People's, Hospital of Henan UniversityZhengzhouPeople's Republic of China
| | - Qiong Ma
- Department of Clinical Laboratory, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, People's, Hospital of Henan UniversityZhengzhouPeople's Republic of China
| | - Xuelin Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, People's, Hospital of Henan UniversityZhengzhouPeople's Republic of China
| | - Kunshan Guo
- Xuchang Central Hospital of Henan University of Science and TechnologyXuchangPeople's Republic of China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal CordHenan Provincial People's HospitalZhengzhouPeople's Republic of China
| | - Gang Li
- Department of Clinical Laboratory, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, People's, Hospital of Henan UniversityZhengzhouPeople's Republic of China
| |
Collapse
|
31
|
Liu ET, Zhou S, Li Y, Zhang S, Ma Z, Guo J, Guo L, Zhang Y, Guo Q, Xu L. Development and validation of an MRI-based nomogram for the preoperative prediction of tumor mutational burden in lower-grade gliomas. Quant Imaging Med Surg 2022; 12:1684-1697. [PMID: 35284257 PMCID: PMC8899970 DOI: 10.21037/qims-21-300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/30/2021] [Indexed: 09/25/2023]
Abstract
BACKGROUND High tumor mutational burden (TMB) is an emerging biomarker of sensitivity to immune checkpoint inhibitors. In this study, we aimed to determine the value of magnetic resonance (MR)-based preoperative nomogram in predicting TMB status in lower-grade glioma (LGG) patients. METHODS Overall survival (OS) data were derived from The Cancer Genome Atlas (TCGA) and then analyzed by using the Kaplan-Meier method and time-dependent receiver operating characteristic (tdROC) analysis. The magnetic resonance imaging (MRI) data of 168 subjects obtained from The Cancer Imaging Archive (TCIA) were retrospectively analyzed. The correlation was explored by univariate and multivariate regression analyses. Finally, we performed tenfold cross validation. TMB values were retrieved from the supplementary information of a previously published article. RESULTS The high TMB subtype was associated with the shortest median OS (high vs. low: 50.9 vs. 95.6 months, P<0.05). The tdROC for the high-TMB tumors was 74% (95% CI: 61-86%) for survival at 12 months, and 71% (95% CI: 60-82%) for survival at 24 months. Multivariate logistic regression analysis confirmed that three risk factors [extranodular growth: odds ratio (OR): 8.367, 95% CI: 3.153-22.199, P<0.01; length-width ratio ≥ median: OR: 1.947, 95% CI: 1.025-3.697, P<0.05; frontal lobe: OR: 0.455, 95% CI: 0.229-0.903, P<0.05] were significant independent predictors of high-TMB tumors. The nomogram showed good calibration and discrimination. This model had an area under the curve (AUC) of 0.736 (95% CI: 0.655-0.817). Decision curve analysis (DCA) demonstrated that the nomogram was clinically useful. The average accuracy of the tenfold cross validation was 71.6% for high-TMB tumors. CONCLUSIONS Our results indicated that a distinct OS disadvantage was associated with the high TMB group. In addition, extranodular growth, nonfrontal lobe tumors and length-width ratio ≥ median can be conveniently used to facilitate the prediction of high-TMB tumors.
Collapse
Affiliation(s)
- En-Tao Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuqin Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yingwen Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Siwei Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zelan Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junbiao Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lei Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yue Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Quanlai Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
32
|
Wei R, Zhao C, Li J, Yang F, Xue Y, Wei X. Online calculator to predict early mortality in patient with surgically treated recurrent lower-grade glioma. BMC Cancer 2022; 22:114. [PMID: 35086512 PMCID: PMC8796632 DOI: 10.1186/s12885-022-09225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Purpose The aim of this study was to investigate the epidemiological characteristics and associated risk factors of recurrent lower-grade glioma [LGG] (WHO grades II and III) according to the 2016 updated WHO classification paradigm and finally develop a model for predicting early mortality (succumb within a year after reoperation) in recurrent LGG patients. Methods Data were obtained from consecutive patients who underwent surgery for primary LGG and reoperation for tumor recurrence. The end point “early mortality” was defined as death within 1 year after the reoperation. Predictive factors, including basic clinical characteristics and laboratory data, were retrospectively collected. Results A final nomogram was generated for surgically treated recurrent LGG. Factors that increased the probability of early mortality included older age (P = 0.042), D-dimer> 0.187 (P = 0.007), RDW > 13.4 (P = 0.048), PLR > 100.749 (P = 0.014), NLR > 1.815 (P = 0.047), 1p19q intact (P = 0.019), IDH1-R132H Mutant (P = 0.048), Fib≤2.80 (P = 0.018), lack of Stupp concurrent chemoradiotherapy (P = 0.041), and an initial symptom of epilepsy (P = 0.047). The calibration curve between the prediction from this model and the actual observations showed good agreement. Conclusion: A nomogram that predicts individualized probabilities of early mortality for surgically treated recurrent LGG patients could be a practical clinical tool for counseling patients regarding treatment decisions and optimizing therapeutic approaches. Free online software implementing this nomogram is provided at https://warrenwrl.shinyapps.io/RecurrenceGliomaEarlyM/ Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09225-9.
Collapse
Affiliation(s)
- Ruolun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road, Zhengzhou, China
| | - Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jianguo Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengdong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road, Zhengzhou, China
| | - Yake Xue
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road, Zhengzhou, China
| | - Xinting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
33
|
The IDH1 inhibitor ivosidenib improved seizures in a patient with drug-resistant epilepsy from IDH1 mutant oligodendroglioma. Epilepsy Behav Rep 2022; 18:100526. [PMID: 35198955 PMCID: PMC8844211 DOI: 10.1016/j.ebr.2022.100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/03/2022] Open
Abstract
Focal epilepsy from oligodendrogliomas can be very treatment resistant. IDH1/2 mutation can lower seizure threshold by D2HG production. Ivosidenib, an IDH1 inhibitor, significantly improved seizures in our patient. In our patient, seizure improvement was seen with stable tumor appearance on MRI.
Compared to high grade gliomas, low grade gliomas such as oligodendrogliomas are often more epileptogenic. Epilepsy develops in 70–90% of patients with oligodendrogliomas and 40% of these are resistant to anti-seizure medications and surgery [3]. IDH1/2 mutation is one defining feature of oligodendrogliomas and confers improved prognosis when found in astrocytomas [7]. One possible etiology of the high rate of epileptogenicity in oligodendrogliomas is D-2-Hydroxyglutarate (D2HG), an oncometabolite seen in IDH mutation [8]. D2HG can mimic the effect of glutamate at the NMDA receptor and increase the seizure risk [11]. In this case report, we present a patient with drug resistant focal epilepsy from IDH1 mutant oligodendroglioma with markedly improved seizure frequency after starting Ivosidenib, an IDH1 inhibitor, in the absence of any changes to traditional anti-seizure medications. Our case suggests the possibility that IDH1 inhibitors may help reduce seizure burden in patients with difficult to control epilepsy from IDH1 mutant oligodendrogliomas. This is significant because we show that a targeted cancer therapy is able to improve seizure frequency through a unique pathway, and suggests that research into similar targeted, precision medicine therapies in brain lesions associated with epilepsy may be beneficial.
Collapse
|
34
|
Wang J, Xia S, Zhao J, Gong C, Xi Q, Sun W. Prognostic Potential of Secreted Modular Calcium-Binding Protein 1 in Low-Grade Glioma. Front Mol Biosci 2021; 8:666623. [PMID: 34869577 PMCID: PMC8640086 DOI: 10.3389/fmolb.2021.666623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Secreted modular calcium-binding protein 1 (SMOC1) belongs to a family of matricellular proteins; it was involved in embryo development, endothelial cell proliferation, angiogenesis, integrin–matrix interactions, cell adhesion, and regulation of glucose metabolism. Previous studies showed that the expression of SMOC1 was increased in some tumors. However, the prognostic value and the biological function of SMOC1 in tumor remain unclear. Methods: In this study, we explored the expression profile and prognostic value of SMOC1 in pan-cancers, especially glioma, via multiple databases, including Oncomine, Gene Expression Profiling Interactive 2, PrognoScan, Kaplan–Meier plotter, and the Chinese Glioma Genome Atlas database. Furthermore, LinkedOmics was used to identify the genes coexpressed with SMOC1 and to perform Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology analysis in low-grade glioma (LGG). Also, the Cancer Single-Cell State Atlas database was used to evaluate the correlation between SMOC1 expression and functional state activities in glioma cells. In addition, the Tumor Immune Estimation Resource and TISIDB databases were used to evaluate the correlations between SMOC1 expression and tumor-infiltrating immune cells in the tumor microenvironment. Results: Compared with normal brain tissues, the expression of SMOC1 was increased in LGG tissues. The higher expression of SMOC1 was significantly correlated with better survival of LGG patients. Additionally, functional analyses showed that the SMOC1 coexpressed genes were inhibited in processes such as response to type I interferon and interferon-gamma, lymphocyte-mediated immunity, leukocyte migration, adaptive immune response, neutrophil-mediated immunity, T cell activation, and pathways including EMC–receptor interaction, Th17 cell differentiation, and leukocyte trans-endothelial migration in LGG. Moreover, the expression of SMOC1 was correlated with stemness, hypoxia, EMT, and metastasis of glioma cells. Additionally, the expression of SMOC1 expression was negatively correlated with levels of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells, and gene markers of most immune cells in LGG. Conclusion: Our results suggest that SMOC1 could be a potential biomarker to determine prognosis and might play a specific role in the tumor microenvironment of glioma, thereby influencing the development and progression of glioma. These findings provide some new insights for further investigation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Shi LF, Zhang Q, Shou XY, Niu HJ. Expression and Prognostic Value Identification of Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2) in Brain Low-Grade Glioma. Int J Gen Med 2021; 14:4517-4527. [PMID: 34421310 PMCID: PMC8373260 DOI: 10.2147/ijgm.s323858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Objective This study aimed to reveal the potential function of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and emphasized its importance in brain low-grade glioma (LGG). Methods We firstly explored the differential expression of MTHFD2 mRNA in LGG and normal tissues, followed by correlation analysis of MTHFD2 mRNA expression with patient’s clinical characteristics. MTHFD2 protein expression in LGG and subcellular location were also evaluated. Then, survival analysis was performed to reveal the influence of MTHFD2 expression on the overall survival of patients, and Cox regression analysis was applied to predict the prognostic factor for overall survival of LGG. Finally, we performed functional analysis to reveal potential MTHFD2-associated pathways involved in LGG. Results We found that MTHFD2 was highly expressed in LGG patients (P<0.05), and MTHFD2 expression was related to patient’s age and IDH mutation status (all P<0.05). MTHFD2 protein was mainly localized to the mitochondria. Survival analysis showed that high expression of MTHFD2 desirably improved the prognosis of LGG patients (P<0.001), especially for those patients with age ≥45 years (P<0.05). But independent prognostic role of MTHFD2 in LGG was not observed. Pathway enrichment analysis indicated that MTHFD2 high expression significantly and positively participated in the pathway of one carbon pool by folate (all P<0.05). Conclusion High expression of MTHFD2 was observed in LGG, which was favorable for the overall survival of LGG patients. Our results assumed that MTHFD2 high expression might play a pivotal role in LGG through positively regulating pathway of one carbon pool by folate.
Collapse
Affiliation(s)
- Lu-Feng Shi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Qian Zhang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Xiao-Ying Shou
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Huan-Jiang Niu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| |
Collapse
|
36
|
Wang M, Cui Y, Cai Y, Jiang Y, Peng Y. Comprehensive Bioinformatics Analysis of mRNA Expression Profiles and Identification of a miRNA-mRNA Network Associated with the Pathogenesis of Low-Grade Gliomas. Cancer Manag Res 2021; 13:5135-5147. [PMID: 34234557 PMCID: PMC8254561 DOI: 10.2147/cmar.s314011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Low-grade glioma is the most common type of primary intracranial tumour, and the overall survival of patients with low-grade glioma (LGG) has shown no significant improvement over the past few decades. Therefore, it is crucial to understand the precise molecular mechanisms involved in the carcinogenesis of LGG. Methods To investigate the regulatory mechanisms of mRNA–miRNA networks related to LGG, in the present study, a comprehensive analysis of the genomic landscape between low-grade gliomas and normal brain tissues from the GEO and TCGA datasets was first conducted to identify differentially expressed genes (DEGs) and differentially expressed miRNAs in LGG. Following a series of analyses, including WGCNA, GO and KEGG analyses, PPI and key model analyses, and survival analysis of the DEGs with clinical phenotypes, the potential key genes were screened and identified, and the related miRNA–mRNA networks were subsequently constructed through miRWalk 3.0. Finally, the potential miRNA–mRNA networks were further validated in CGGA (Chinese Glioma Genome Atlas) datasets and clinical specimens by qRT-PCR. Results In our results, six hub genes, MELK, NCAPG, KIF4A, NUSAP1, CEP55, and TOP2A, were ultimately identified. Two regulatory pathways, miR-495-3p-TOP2A and miR-1224-3p-MELK, that regulate the pathogenesis of LGG were ultimately identified. Furthermore, the expression of miR-495-3p-TOP2A and miR-1224-3p-MELK in solid tissues was validated by qRT-PCR. Conclusion Our study identified hub genes and related miRNA–mRNA regulatory pathways that contribute to the carcinogenesis of LGG, which may help us reveal the mechanisms underlying the development of LGG.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yang Cai
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
37
|
Hosmann A, Millesi M, Wadiura LI, Kiesel B, Mercea PA, Mischkulnig M, Borkovec M, Furtner J, Roetzer T, Wolfsberger S, Phillips JJ, Berghoff AS, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA Fluorescence Is a Powerful Prognostic Marker during Surgery of Low-Grade Gliomas (WHO Grade II)-Experience at Two Specialized Centers. Cancers (Basel) 2021; 13:cancers13112540. [PMID: 34064222 PMCID: PMC8196836 DOI: 10.3390/cancers13112540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
The prediction of the individual prognosis of low-grade glioma (LGG) patients is limited in routine clinical practice. Nowadays, 5-aminolevulinic acid (5-ALA) fluorescence is primarily applied for improved intraoperative visualization of high-grade gliomas. However, visible fluorescence is also observed in rare cases despite LGG histopathology and might be an indicator for aggressive tumor behavior. The aim of this study was thus to investigate the value of intraoperative 5-ALA fluorescence for prognosis in LGG patients. We performed a retrospective analysis of patients with newly diagnosed histopathologically confirmed LGG and preoperative 5-ALA administration at two independent specialized centers. In this cohort, we correlated the visible intraoperative fluorescence status with progression-free survival (PFS), malignant transformation-free survival (MTFS) and overall survival (OS). Altogether, visible fluorescence was detected in 7 (12%) of 59 included patients in focal intratumoral areas. At a mean follow-up time of 5.3 ± 2.9 years, patients with fluorescing LGG had significantly shorter PFS (2.3 ± 0.7 vs. 5.0 ± 0.4 years; p = 0.01), MTFS (3.9 ± 0.7 vs. 8.0 ± 0.6 years; p = 0.03), and OS (5.4 ± 1.0 vs. 10.3 ± 0.5 years; p = 0.01) than non-fluorescing tumors. Our data indicate that visible 5-ALA fluorescence during surgery of pure LGG might be an already intraoperatively available marker of unfavorable patient outcome and thus close imaging follow-up might be considered.
Collapse
Affiliation(s)
- Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
| | - Matthias Millesi
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
| | - Petra A. Mercea
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
| | - Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
| | - Martin Borkovec
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
| | - Julia Furtner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
| | - Thomas Roetzer
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Wolfsberger
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
| | - Joanna J. Phillips
- Department of Pathology, University of California, San Francisco (UCSF), CA 94143, USA;
| | - Anna S. Berghoff
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco (UCSF), CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco (UCSF), CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.H.); (M.M.); (L.I.W.); (B.K.); (P.A.M.); (M.M.); (M.B.); (S.W.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit (CCC-CNS), Medical University of Vienna, 1090 Vienna, Austria; (T.R.); (A.S.B.)
- Correspondence: ; Tel.: +43-1-40400-45650
| |
Collapse
|
38
|
Abstract
PANX2 forms large-pore channels mediating ATP release in response to physiological and pathological stimuli. Although PANX2 shows involvements in glioma genesis, the underlying mechanism remains unclear. PANX2 mRNA expression was analyzed via Oncomine and was confirmed via Gene Expression Profiling Interactive Analysis (GEPIA). The influence of PANX2 on overall survival (OS) of glioma was evaluated using LinkedOmics and further assessed through Cox regression analysis. The correlated genes with PANX2 acquired from LinkedOmics were validated through GEPIA and cBioPortal. Protein-protein interaction (PPI) of these genes was then obtained using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape with MCODE plug-in. All the PANX2-related genes underwent Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The correlation between PANX2 and cancer immune infiltrates was evaluated via Tumor Immune Estimation Resource (TIMER). A higher expression of PANX2 only revealed a better OS in brain low grade glioma (LGG). PANX2-related genes in LGG functionally enriched in neuroactive ligand-receptor interaction, synaptic vesicle cycle, and calcium signaling. The hub genes from highest module of PPI were mainly linked to chemical synaptic transmission, plasma membrane, neuropeptide, and the pathway of neuroactive ligand-receptor interaction. Besides, PANX2 expression was negatively associated with infiltrating levels of macrophage, dendritic cells, and CD4+ T cells. This study demonstrated that PANX2 likely participated in LGG pathogenesis by affecting multiple molecular pathways and immune-related processes. PANX2 was associated with LGG prognosis and might become a promising therapeutic target of LGG.
Collapse
Affiliation(s)
- XiaoXue Xu
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| | - YueHan Hao
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| | - Shuang Xiong
- Liaoning Academy of Analytic Science,
Construction Engineering Center of Important Technology Innovation and Research and
Development Base in Liaoning Province, Shenyang, China
| | - ZhiYi He
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| |
Collapse
|
39
|
Habib A, Jovanovich N, Hoppe M, Ak M, Mamindla P, R. Colen R, Zinn PO. MRI-Based Radiomics and Radiogenomics in the Management of Low-Grade Gliomas: Evaluating the Evidence for a Paradigm Shift. J Clin Med 2021; 10:1411. [PMID: 33915813 PMCID: PMC8036428 DOI: 10.3390/jcm10071411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
Low-grade gliomas (LGGs) are tumors that affect mostly adults. These neoplasms are comprised mainly of oligodendrogliomas and diffuse astrocytomas. LGGs remain vexing to current management and therapeutic modalities although they exhibit more favorable survival rates compared with high-grade gliomas (HGGs). The specific genetic subtypes that these tumors exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of an LGG pivots mainly around the preliminary radiological findings and the subsequent definitive surgical diagnosis (via surgical sampling). The introduction of radiomics as a high throughput quantitative imaging technique that allows for improved diagnostic, prognostic and predictive indices has created more interest for such techniques in cancer research and especially in neurooncology (MRI-based classification of LGGs, predicting Isocitrate dehydrogenase (IDH) and Telomerase reverse transcriptase (TERT) promoter mutations and predicting LGG associated seizures). Radiogenomics refers to the linkage of imaging findings with the tumor/tissue genomics. Numerous applications of radiomics and radiogenomics have been described in the clinical context and management of LGGs. In this review, we describe the recently published studies discussing the potential application of radiomics and radiogenomics in LGGs. We also highlight the potential pitfalls of the above-mentioned high throughput computerized techniques and, most excitingly, explore the use of machine learning artificial intelligence technologies as standalone and adjunct imaging tools en route to enhance a personalized MRI-based tumor diagnosis and management plan design.
Collapse
Affiliation(s)
- Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA;
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Meagan Hoppe
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Murat Ak
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
- Department of Diagnostic Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Priyadarshini Mamindla
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Rivka R. Colen
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
- Department of Diagnostic Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA;
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| |
Collapse
|
40
|
Adamczyk B, Węgrzyn K, Wilczyński T, Maciarz J, Morawiec N, Adamczyk-Sowa M. The Most Common Lesions Detected by Neuroimaging as Causes of Epilepsy. ACTA ACUST UNITED AC 2021; 57:medicina57030294. [PMID: 33809843 PMCID: PMC8004256 DOI: 10.3390/medicina57030294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
Epilepsy is a common neurological disorder characterized by chronic, unprovoked and recurrent seizures, which are the result of rapid and excessive bioelectric discharges in nerve cells. Neuroimaging is used to detect underlying structural abnormalities which may be associated with epilepsy. This paper reviews the most common abnormalities, such as hippocampal sclerosis, malformations of cortical development and vascular malformation, detected by neuroimaging in patients with epilepsy to help understand the correlation between these changes and the course, treatment and prognosis of epilepsy. Magnetic resonance imaging (MRI) reveals structural changes in the brain which are described in this review. Recent studies indicate the usefulness of additional imaging techniques. The use of fluorodeoxyglucose positron emission tomography (FDG-PET) improves surgical outcomes in MRI-negative cases of focal cortical dysplasia. Some techniques, such as quantitative image analysis, magnetic resonance spectroscopy (MRS), functional MRI (fMRI), diffusion tensor imaging (DTI) and fibre tract reconstruction, can detect small malformations—which means that some of the epilepsies can be treated surgically. Quantitative susceptibility mapping may become the method of choice in vascular malformations. Neuroimaging determines appropriate diagnosis and treatment and helps to predict prognosis.
Collapse
|
41
|
Zhao C, Zhang N, Cui X, Zhang X, Ren Y, Su C, He J, Zhang W, Sun X, Yang J, Gao X. Integrative analysis regarding the correlation between GAS2 family genes and human glioma prognosis. Cancer Med 2021; 10:2826-2839. [PMID: 33713047 PMCID: PMC8026934 DOI: 10.1002/cam4.3829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background Emerging oncogenes were reportedly linked to the complicated subtypes and pathogenesis of clinical gliomas. Herein, we first comprehensively explored the potential correlation between growth‐arrest‐specific two family genes (GAS2, GAS2L1, GAS2L2, GAS2L3) and gliomas by bioinformatics analysis and cellular experiments. Methods Based on the available datasets of TCGA (The Cancer Genome Atlas), CGGA (Chinese Glioma Genome Atlas), and Oncomine databases, we performed a series of analyses, such as gene expression, survival prognosis, DNA methylation, immune infiltration, and partner enrichment. We also utilized two glioma cell lines to conduct the colony formation and wound‐healing assay. Results GAS2L3 gene was highly expressed in glioma tissues compared to normal brain tissues (p < 0.05). We further observed the relationship between the high expressed GAS2L3 and poor clinical prognosis of brain low‐grade glioma (LGG) cases in our Cox proportional hazard model (hazard ratio [HR] = 0.1715, p < 0.001). Moreover, DNA hypomethylation status of GAS2L3 was correlated with the high expression of GAS2L3 in LGG tissues and the poor clinical prognosis of primary glioma cases (p < 0.05). We also found that the high expression of GAS2L3 was associated with the infiltration level of immune cells, especially the T cells (p < 0.0001). Functional enrichment analysis of GAS2L3‐correlated genes and interaction partners further indicated that GAS2L3 might take part in the occurrence of glioma by influencing a series of biological behaviors, such as cell division, cytoskeleton binding, and cell adhesion. Additionally, our cellular experiment data suggested that a highly expressed GAS2L3 gene contributes to the enhanced proliferation and migration of glioma cells. Conclusion This study first analyzed the potential role of GAS2 family genes, especially GAS2L3, in the clinical prognosis and possible functional mechanisms of glioma, which gives a novel insight into the relationship between GAS2L3 and LGG.
Collapse
Affiliation(s)
- Chunyan Zhao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Cui
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China
| | - Xinxin Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Chao Su
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Jinyan He
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xiaoming Sun
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| |
Collapse
|
42
|
Zhao Y, Zhang X, Yao J. Comprehensive analysis of PLOD family members in low-grade gliomas using bioinformatics methods. PLoS One 2021; 16:e0246097. [PMID: 33503035 PMCID: PMC7840023 DOI: 10.1371/journal.pone.0246097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Low-grade gliomas (LGGs) is a primary invasive brain tumor that grows slowly but is incurable and eventually develops into high malignant glioma. Novel biomarkers for the tumorigenesis and lifetime of LGG are critically demanded to be investigated. In this study, the expression levels of procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) were analyzed by ONCOMINE, HPA and GEPIA. The GEPIA online platform was applied to evaluate the interrelation between PLODs and survival index in LGG. Furthermore, functions of PLODs and co-expression genes were inspected by the DAVID. Moreover, we used TIMER, cBioportal, GeneMINIA and NetworkAnalyst analysis to reveal the mechanism of PLODs in LGG. We found that expression levels of each PLOD family members were up-regulated in patients with LGG. Higher expression of PLODs was closely related to shorter disease-free survival (DFS) and overall survival (OS). The findings showed that LGG cases with or without alterations were significantly correlated with the OS and DFS. The mechanism of PLODs in LGG may be involved in response to hypoxia, oxidoreductase activity, Lysine degradation and immune cell infiltration. In general, this research has investigated the values of PLODs in LGG, which could serve as biomarkers for diagnosis, prognosis and potential therapeutic targets of LGG patients.
Collapse
Affiliation(s)
- Yonghui Zhao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
- * E-mail:
| | - Xiang Zhang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Junchao Yao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
| |
Collapse
|
43
|
Otazu GK, Dayyani M, Badie B. Role of RAGE and Its Ligands on Inflammatory Responses to Brain Tumors. Front Cell Neurosci 2021; 15:770472. [PMID: 34975408 PMCID: PMC8716782 DOI: 10.3389/fncel.2021.770472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Gliomas, the most common form of brain cancer, can range from relatively slow-growing low-grade to highly aggressive glioblastoma that has a median overall survival of only 15 months despite multimodal standard therapy. Although immunotherapy with checkpoint inhibitors has significantly improved patient survival for some cancers, to date, these agents have not shown consistent efficacy against malignant gliomas. Therefore, there is a pressing need to better understand the impact of host inflammatory responses on the efficacy of emerging immunotherapy approaches for these resistant tumors. RAGE is a multi-ligand pattern recognition receptor that is activated in various inflammatory states such as diabetes, Alzheimer's disease, cystic fibrosis, and cancer. Low levels of RAGE can be found under normal physiological conditions in neurons, immune cells, activated endothelial, and vascular smooth muscle cells, but it is over-expressed under chronic inflammation due to the accumulation of its ligands. RAGE binds to a range of damage-associated molecular pattern molecules (DAMPs) including AGEs, HMGB1, S100s, and DNA which mediate downstream cellular responses that promote tumor growth, angiogenesis, and invasion. Both in vitro and in vivo studies have shown that inhibition of RAGE signaling can disrupt inflammation and cancer progression and metastasis. Here, we will review our current understanding of the role of RAGE pathway on glioma progression and how it could be exploited to improve the efficacy of immunotherapy approaches.
Collapse
Affiliation(s)
- Griffith Kyle Otazu
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Mojtaba Dayyani
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| |
Collapse
|
44
|
Management of incidental brain tumors in children: a systematic review. Childs Nerv Syst 2020; 36:1607-1619. [PMID: 32377829 DOI: 10.1007/s00381-020-04658-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to technical advancements and availability of neuroimaging, detection of incidental pediatric brain tumors (IPBT) is growing rapidly. The management of these asymptomatic lesions remains unclear; radiological, pathological, and clinical risk factors for further growth and malignant transformation (MT) are not well defined. METHODS We systematically reviewed the literature on the dilemmas and management of IPBT suggestive of a low-grade brain tumor (LGBT). Keyword searches of the PubMed and Medline (NCBI) databases identified studies on IPBT describing the prevalence, neuroimaging, management, or risk of MT through July 2019. References of the identified articles were also reviewed. RESULTS A total of 2021 records were screened. Fifty-nine full-text articles were reviewed, and 34 published studies were included. IPBT are diagnosed in 0.2-5.7% of children undergoing brain imaging for various reasons. The accepted approach for management of lesions showing radiological characteristics suggestive of LGBT is radiological follow-up. The rate at which additional intervention is required during follow-up for these apparently low-grade lesions is 9.5%. Nevertheless, the dilemma of early surgical resection or biopsy vs. clinical and radiological follow-up of IPBT is still unresolved. The risk in these cases is missing a transformation to a higher grade tumor. However, MT of pediatric LGBT is very rare, occurring in less than 3% of the cases of proven low-grade gliomas in children. The risk of future MT in pediatric low-grade gliomas seems to be greater in the presence of specific molecular markers such as BRAF V-600E, CDKN2A, and H3F3A K27M. CONCLUSIONS The natural history, management, and prognosis of IPBT remain ambiguous. It seems that lesions suggestive of LGBT can initially be followed, since many of these lesions remain stable over time and MT is rare. However, controversy among centers concerning the ideal approach still exists. Further observational and prospective cohort studies, focusing on potential clinical and radiological characteristics or risk factors suggestive of high-grade tumors, tumor progress, or MT of IPBT, are needed.
Collapse
|
45
|
Downregulation of LUZP2 Is Correlated with Poor Prognosis of Low-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9716720. [PMID: 32695826 PMCID: PMC7368956 DOI: 10.1155/2020/9716720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
Background LUZP2 is a protein limitedly expressed in the brain and spinal cord, while there are few studies on it in brain tumors. Low-grade glioma (LGG) is one of the most common brain tumors. However, the biological behavior of LGG is not very clear at present. This study was aimed at exploring the role of LUZP2 in LGG. Methods By data mining in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), the expression, clinical characteristics, and potential regulatory mechanism of LUZP2 in LGG were assessed. The regulatory miRNAs of LUZP2 were predicted using miRDB, TargetScan, and miRTarBase. Meanwhile, the potential biological function of coexpressed genes was investigated by GO and KEGG analyses. Results LUZP2 expression was downregulated with the increase of tumor grade (p < 0.05). Low LUZP2 expression independently predicted poor OS in LGG in TCGA cohort and the CGGA part B and part C cohorts (all p < 0.001). Additionally, LUZP2 was targeted by miR-142-5p according to 2 prediction databases and 1 validated database, which was negatively related to LUZP2 mRNA expression (p < 0.001). Kaplan-Meier analyses demonstrated that low miR-142-5p expression was significantly associated with poor OS (p < 0.001). Furthermore, coexpression genes of LUZP2 were significantly involved in nervous system development and metabolic pathways. Conclusions LUZP2 may be crucial for nervous system extracellular matrix development and serve as an important clinical biomarker for LGG patients. miR-142-5p upregulation could be the upstream regulator that contributed to LUZP2 downregulation.
Collapse
|