1
|
Aubignat M, Berro A, Tir M, Lefranc M. Imaging-Guided Subthalamic Nucleus Deep Brain Stimulation Programming for Parkinson Disease: A Real-Life Pilot Study. Neurol Clin Pract 2024; 14:e200326. [PMID: 39282508 PMCID: PMC11396028 DOI: 10.1212/cpj.0000000000200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 09/19/2024]
Abstract
Background and Objectives Deep brain stimulation (DBS) is a well-established treatment for Parkinson disease (PD), with programming methods continually evolving. This study aimed to compare the efficacy and patient burden between conventional ring-mode programming (CP-RM) and image-guided volume of tissue activated (IG-VTA) programming for subthalamic nucleus (STN) DBS in PD. Methods In this retrospective study, patients with PD who underwent STN-DBS between 2011 and 2014 (CP-RM group) and 2019 and 2021 (IG-VTA group) were evaluated. The primary outcome was the improvement in the UPDRS III score from preoperative OFF to postoperative ON state without medication at one-year follow-up. Secondary outcomes included hospital stay duration and programming sessions. Results A total of 26 patients were analyzed (IG-VTA: n = 12, CP-RM: n = 14). Both groups showed similar improvements in UPDRS III scores (IG-VTA: 43.62, CP-RM: 41.29). However, the IG-VTA group experienced shorter immediate postoperative hospital stays and fewer hospitalizations after discharge. Discussion IG-VTA programming preserved the clinical efficacy of STN-DBS over 1 year and reduced the patient and clinician burden of hospital stay and programming sessions. However, conclusions drawn must consider the limitations of retrospective design, differing time epochs, and evolving clinical practices. Further multicentric and prospective studies are warranted to validate these findings in the evolving field of neurostimulation. Trial Registration Information The trial is registered on clinicaltrials.gov (NCT05103072).
Collapse
Affiliation(s)
- Mickael Aubignat
- Department of Neurology (MA, AB, MT); Expert Center for Parkinson's Disease (MA, AB, MT, ML); Department of Neurosurgery (ML), Amiens Picardie University Hospital; Research Unit in Robotic Surgery (GRECO) (ML); and Research Unit UR-7516 (CHIMERE) Research Team for Head and Neck (ML), Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
| | - Alexis Berro
- Department of Neurology (MA, AB, MT); Expert Center for Parkinson's Disease (MA, AB, MT, ML); Department of Neurosurgery (ML), Amiens Picardie University Hospital; Research Unit in Robotic Surgery (GRECO) (ML); and Research Unit UR-7516 (CHIMERE) Research Team for Head and Neck (ML), Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
| | - Mélissa Tir
- Department of Neurology (MA, AB, MT); Expert Center for Parkinson's Disease (MA, AB, MT, ML); Department of Neurosurgery (ML), Amiens Picardie University Hospital; Research Unit in Robotic Surgery (GRECO) (ML); and Research Unit UR-7516 (CHIMERE) Research Team for Head and Neck (ML), Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
| | - Michel Lefranc
- Department of Neurology (MA, AB, MT); Expert Center for Parkinson's Disease (MA, AB, MT, ML); Department of Neurosurgery (ML), Amiens Picardie University Hospital; Research Unit in Robotic Surgery (GRECO) (ML); and Research Unit UR-7516 (CHIMERE) Research Team for Head and Neck (ML), Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
2
|
Aubignat M, Tir M, Ouendo M, Boussida S, Constans JM, Lefranc M. Unilateral Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy Thalamotomy for Essential Tremor. Mov Disord 2024; 39:1006-1014. [PMID: 38532534 DOI: 10.1002/mds.29790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Essential tremor (ET) affects numerous adults, impacting quality of life (QOL) and often defying pharmacological treatment. Surgical interventions like deep brain stimulation (DBS) and lesional approaches, including radiofrequency, gamma-knife radiosurgery, and magnetic resonance imaging (MRI)-guided focused ultrasound, offer solutions but are not devoid of limitations. OBJECTIVES This retrospective, single-center, single-blinded pilot study aimed to assess the safety and efficacy of unilateral MRI-guided laser interstitial thermal therapy (MRIg-LITT) thalamotomy for medically intractable ET. METHODS Nine patients with ET, unresponsive to medications and unsuitable for DBS, underwent unilateral MRIg-LITT thalamotomy. We assessed tremor severity, QOL, cognitive function, and adverse events (AE) over a 12-month period. RESULTS Tremor severity significantly improved, with a reduction of 83.37% at 12 months post-procedure. QOL scores improved by 74.60% at 12 months. Reported AEs predominantly included transient dysarthria, proprioceptive disturbances, and gait balance issues, which largely resolved within a month. At 3 months, 2 patients (22%) exhibited contralateral hemiparesis requiring physiotherapy, with 1 patient (11%) exhibiting persistent hemiparesis at 12 months. No significant cognitive impairment was detected post-procedure. CONCLUSIONS Unilateral MRIg-LITT thalamotomy yielded substantial and enduring tremor alleviation and enhanced QOL in patients with ET that is resistant to medication. The AE profile was acceptable. Our findings support the need for additional research with expanded patient cohorts and extended follow-up to corroborate these outcomes and to refine the role of MRIg-LITT as a targeted and minimally invasive approach for ET management. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mickael Aubignat
- Department of Neurology and Movement Disorders, Amiens Picardie University Hospital, Amiens, France
- Expert Center for Parkinson's Disease, Amiens Picardie University Hospital, Amiens, France
| | - Mélissa Tir
- Department of Neurology and Movement Disorders, Amiens Picardie University Hospital, Amiens, France
- Expert Center for Parkinson's Disease, Amiens Picardie University Hospital, Amiens, France
| | - Martial Ouendo
- Expert Center for Parkinson's Disease, Amiens Picardie University Hospital, Amiens, France
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardie University Hospital, Amiens, France
| | - Salem Boussida
- Department of Radiology, Amiens Picardie University Hospital, Amiens, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens Picardie University Hospital, Amiens, France
- Research Unit UR-7516 (CHIMERE) Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
| | - Michel Lefranc
- Expert Center for Parkinson's Disease, Amiens Picardie University Hospital, Amiens, France
- Research Unit UR-7516 (CHIMERE) Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- Department of Neurosurgery, Amiens Picardie University Hospital, Amiens, France
- Research Unit in Robotic Surgery (GRECO), University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
3
|
Torres V, Del Giudice K, Roldán P, Rumià J, Muñoz E, Cámara A, Compta Y, Sánchez-Gómez A, Valldeoriola F. Image-guided programming deep brain stimulation improves clinical outcomes in patients with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:29. [PMID: 38280901 PMCID: PMC10821897 DOI: 10.1038/s41531-024-00639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for patients with Parkinson's disease (PD). However, some patients may not respond optimally to clinical programming adjustments. Advances in DBS technology have led to more complex and time-consuming programming. Image-guided programming (IGP) could optimize and improve programming leading to better clinical outcomes in patients for whom DBS programming is not ideal due to sub-optimal response. We conducted a prospective single-center study including 31 PD patients with subthalamic nucleus (STN) DBS and suboptimal responses refractory to clinical programming. Programming settings were adjusted according to the volumetric reconstruction of the stimulation field using commercial postoperative imaging software. Clinical outcomes were assessed at baseline and at 3-month follow-up after IGP, using motor and quality of life (QoL) scales. Additionally, between these two assessment points, follow-up visits for fine-tuning amplitude intensity and medication were conducted at weeks 2, 4, 6, and 9. After IGP, twenty-six patients (83.9%) experienced motor and QoL improvements, with 25.8% feeling much better and 38.7% feeling moderately better according to the patient global impression scale. Five patients (16.1%) had no clinical or QoL changes after IGP. The MDS-UPDRS III motor scale showed a 21.9% improvement and the DBS-IS global score improved by 41.5%. IGP optimizes STN-DBS therapy for PD patients who are experiencing suboptimal clinical outcomes. These findings support using IGP as a standard tool in clinical practice, which could save programming time and improve patients' QoL.
Collapse
Affiliation(s)
- Viviana Torres
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Kirsys Del Giudice
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Pedro Roldán
- Neurosurgery Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Rumià
- Neurosurgery Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Esteban Muñoz
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Almudena Sánchez-Gómez
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain.
| | - Francesc Valldeoriola
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Aubignat M, Tir M, Ouendo M, Constans JM, Lefranc M. Stereotactic robot-assisted MRI-guided laser interstitial thermal therapy thalamotomy for medically intractable Parkinson's disease tremor: technical note and preliminary effects on 2 cases. Acta Neurochir (Wien) 2023; 165:1453-1460. [PMID: 37140648 DOI: 10.1007/s00701-023-05614-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Medically intractable Parkinson's disease (PD) tremor is a common difficult clinical situation with major impact on patient's quality of life (QOL). Deep brain stimulation (DBS) is an effective therapy but is not an option for many patients. Less invasive lesional brain surgery procedures, such as thalamotomy, have proven to be effective in these indications. Here, we describe the technical nuances and advantages of stereotactic robot-assisted MRI-guided laser interstitial thermal therapy (MRIg-LITT) thalamotomy for medically intractable PD tremor. METHOD We describe 2 patients with medically intractable PD tremor treated with stereotactic robot-assisted MRIg-LITT thalamotomy performed under general anesthesia with intraoperative electrophysiological testing. Pre and postoperative tremor scores were assessed using the Fahn-Tolosa-Marin tremor rating scale (TRS). RESULTS At 3-month follow-up, both patients demonstrated significant improvement in tremor symptoms subjectively and according to the TRS (75% for both). Patients also had substantial improvements in their QOL (32.54% and 38%) according to the 39-item PD questionnaire. Both patients underwent uncomplicated MRIg-LITT thalamotomy. CONCLUSIONS In patients with medically intractable PD tremor who are unsuitable candidates for DBS, thalamotomy utilizing a stereotactic robot, intraoperative electrophysiological testing, and laser ablation with real-time MRI guidance may be a viable treatment option. However, further studies with larger sample sizes and longer follow-up periods are necessary to confirm these preliminary results.
Collapse
Affiliation(s)
- Mickael Aubignat
- Department of Neurology and Expert Center for Parkinson's disease, Amiens Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens, France.
| | - Mélissa Tir
- Department of Neurology and Expert Center for Parkinson's disease, Amiens Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens, France
| | - Martial Ouendo
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardie University Hospital, Amiens, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens Picardie University Hospital, Amiens, France
- Research Unit UR-7516 (CHIMERE), Amiens Picardie University Hospital, Amiens, France
| | - Michel Lefranc
- Research Unit UR-7516 (CHIMERE), Amiens Picardie University Hospital, Amiens, France
- Department of Neurosurgery and Expert Center for Parkinson's disease, Amiens Picardie University Hospital, Amiens, France
- Research Unit in Robotic Surgery (GRECO), Amiens Picardie University Hospital, Amiens, France
| |
Collapse
|
5
|
Waldthaler J, Sperlich A, Stüssel C, Steidel K, Timmermann L, Pedrosa DJ. Stimulation of non-motor subthalamic nucleus impairs selective response inhibition via prefrontal connectivity. Brain Commun 2023; 5:fcad121. [PMID: 37113315 PMCID: PMC10128876 DOI: 10.1093/braincomms/fcad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Indexed: 04/29/2023] Open
Abstract
Given the inconsistent results in the past, there is an ongoing debate whether and how deep brain stimulation in the subthalamic nucleus modifies cognitive control processes like response inhibition in persons with Parkinson's disease. In this study, we examined how the location of the stimulation volume within the subthalamic nucleus affects the performance in an antisaccade task but also how its structural connectivity is related to response inhibition. Antisaccade error rates and latencies were collected in 14 participants on and off deep brain stimulation in a randomized order. Stimulation volumes were computed based on patient-specific lead localizations using preoperative MRI and postoperative CT scans. Structural connectivity of the stimulation volumes with pre-defined cortical oculomotor control regions as well as whole-brain connectivity was estimated using a normative connectome. We showed that the detrimental effect of deep brain stimulation on response inhibition, measured as antisaccade error rate, depended upon the magnitude of the intersection of volumes of activated tissue with the non-motor subregion of the subthalamic nucleus and on its structural connectivity with regions of the prefrontal oculomotor network including bilateral frontal eye fields and right anterior cingulate cortex. Our results corroborate previous recommendations for avoidance of stimulation in the ventromedial non-motor subregion of the subthalamic nucleus which connects to the prefrontal cortex to prevent stimulation-induced impulsivity. Furthermore, antisaccades were initiated faster with deep brain stimulation when the stimulation volume was connected to fibres passing the subthalamic nucleus laterally and projecting onto the prefrontal cortex, indicating that improvement of voluntary saccade generation with deep brain stimulation may be an off-target effect driven by stimulation of corticotectal fibres directly projecting from the frontal and supplementary eye fields onto brainstem gaze control areas. Taken together, these findings could help implement individualized circuit-based deep brain stimulation strategies that avoid impulsive side effects while improving voluntary oculomotor control.
Collapse
Affiliation(s)
- Josefine Waldthaler
- Correspondence to: Josefine Waldthaler, Department of Neurology, University Hospitals Gießen and Marburg, Baldingerstraße, 35033 Marburg, Hesse, Germany E-mail:
| | - Alexander Sperlich
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Charlotte Stüssel
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Kenan Steidel
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus-Liebig-University Giessen, 35033 Marburg, Germany
| | - David J Pedrosa
- Department of Neurology, University Hospital Gießen and Marburg, 35033 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus-Liebig-University Giessen, 35033 Marburg, Germany
| |
Collapse
|
6
|
Waldthaler J, Bopp M, Kühn N, Bacara B, Keuler M, Gjorgjevski M, Carl B, Timmermann L, Nimsky C, Pedrosa DJ. Imaging-based programming of subthalamic nucleus deep brain stimulation in Parkinson's disease. Brain Stimul 2021; 14:1109-1117. [PMID: 34352356 DOI: 10.1016/j.brs.2021.07.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The need for imaging-guided optimization of Deep Brain Stimulation (DBS) parameters is increasing with recent developments of sophisticated lead designs offering highly individualized, but time-consuming and complex programming. OBJECTIVE The objective of this study was to compare changes in motor symptoms of Parkinson's Disease (PD) and the corresponding volume of the electrostatic field (VEsF) achieved by DBS programming using GUIDE XT™, a commercially available software for visualization of DBS leads within the patient-specific anatomy from fusions of preoperative magnetic resonance imaging (MRI) and postoperative computed tomography (CT) scans, versus standard-of-care clinical programming. METHODS Clinical evaluation was performed to identify the optimal set of parameters based on clinical effects in 29 patients with PD and bilateral directional leads for Subthalamic Nucleus (STN) DBS. A second DBS program was generated in GUIDE XT™ based on a VEsF optimally located within the dorsolateral STN. Reduction of motor symptoms (Movement Disorders Society Unified Parkinson's Disease Rating Scale, MDS-UPDRS) and the overlap of the corresponding VEsF of both programs were compared. RESULTS Clinical and imaging-guided programming resulted in a significant reduction in the MDS-UPDRS scores compared to off-state. Motor symptom control with GUIDE XT™-derived DBS program was non-inferior to standard clinical programming. The overlap of the two VEsF did not correlate with the difference in motor symptom reduction by the programs. CONCLUSIONS Imaging-guided programming of directional DBS leads using GUIDE XT™ is possible without computational background and leads to non-inferior motor symptom control compared with clinical programming. DBS programs based on patient-specific imaging data may thus serve as starting point for clinical testing and may promote more efficient DBS programming.
Collapse
Affiliation(s)
- Josefine Waldthaler
- Department of Neurology, University of Marburg, Germany; CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany.
| | - Miriam Bopp
- CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany; Department of Neurosurgery, University of Marburg, Germany
| | - Nele Kühn
- Department of Neurology, University of Marburg, Germany
| | | | - Merle Keuler
- Department of Neurology, University of Marburg, Germany
| | | | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Germany; Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Lars Timmermann
- Department of Neurology, University of Marburg, Germany; CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany
| | - Christopher Nimsky
- CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany; Department of Neurosurgery, University of Marburg, Germany
| | - David J Pedrosa
- Department of Neurology, University of Marburg, Germany; CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany
| |
Collapse
|
7
|
Jimenez-Shahed J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson's disease and related disorders. Expert Rev Med Devices 2021; 18:319-332. [PMID: 33765395 DOI: 10.1080/17434440.2021.1909471] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Several software and hardware advances in the field of deep brain stimulation (DBS) have been realized in recent years and devices from three manufacturers are available. The Percept™ PC platform (Medtronic, Inc.) enables brain sensing, the latest innovation. Clinicians should be familiar with the differences in devices, and with the latest technologies to deliver optimized patient care.Areas covered: In this device profile, the sensing capabilities of the Percept™ PC platform are described, and the system capabilities are differentiated from other available platforms. The development of the preceding Activa™ PC+S research platform, an investigational device to simultaneously sense brain signals and provide therapeutic stimulation, is provided to place Percept™ PC in the appropriate context.Expert opinion: Percept™ PC offers unique sensing and diary functions as a means to refine therapeutic stimulation, track symptoms and correlate them to neurophysiologic characteristics. Additional features enhance the patient experience with DBS, including 3 T magnetic resonance imaging compatibility, wireless telemetry, a smaller and thinner battery profile, and increased battery longevity. Future work will be needed to illustrate the clinical utility and added value of using sensing to optimize DBS therapy. Patients implanted with Percept™ PC will have ready access to future technology developments.
Collapse
Affiliation(s)
- Joohi Jimenez-Shahed
- Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
8
|
Juárez-Paz LM. In silico Accuracy and Energy Efficiency of Two Steering Paradigms in Directional Deep Brain Stimulation. Front Neurol 2020; 11:593798. [PMID: 33193061 PMCID: PMC7661934 DOI: 10.3389/fneur.2020.593798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
Background: In Deep Brain Stimulation (DBS), stimulation field steering is used to achieve stimulation spatial specificity, which is critical to obtain clinical benefits and avoid side effects. Multiple Independent Current Control (MICC) and Interleaving/Multi Stim Set (Interleaving/MSS) are two stimulation field steering paradigms in commercially available DBS systems. This work investigates the stimulation field steering accuracy and energy efficiency of these two paradigms in directional DBS. Methods: Volumes of Tissue Activated (VTAs) were generated in silico using pulse widths of 60 μs and five pulse amplitude fractionalizations intended to steer the VTAs radially in 12° steps. For each fractionalization, VTAs were generated with nine pre-defined target radii. Stimulation field steering accuracy was assessed based on the VTAs rotation angle. Energy efficiency was inferred from current draw from battery values, which were calculated based on the pulse amplitudes needed to generate and steer the VTAs, as well as electrode impedance measurements of clinically implanted directional leads. Results: For radial steering, MICC needed a single VTA. In contrast, Interleaving/MSS required the generation of two VTAs, whose union and intersection created an Interleaving/MSS VTA and an Intersection VTA, respectively. MICC VTAs were 6.8 (−3.2–11.8)% larger than Interleaving/MSS VTAs. The Intersection VTAs accounted for 26.2 (16.0–32.8)% of Interleaving/MSS VTAs and were exposed to a higher stimulation frequency. For all VTA radius-fractionalization combinations, steering accuracy was 7.0 (4.5–10.5)° for MICC and 24.0 (9.0–25.3)° for Interleaving/MSS. Pulse amplitudes were 16.1 (9.2–28.6)% lower for MICC than for Interleaving/MSS, leading to a 45.9 (18.8–72.6)% lower current draw from battery for MICC. Conclusions: The results of this work show that in silico, MICC achieves a significantly better stimulation field steering accuracy and has a significantly higher energy efficiency than Interleaving/MSS. Although direct evidence still needs to be generated to translate the results of this work to clinical practice, clinical outcomes may profit from the better stimulation field steering accuracy of MICC and longevity of DBS systems may profit from its higher energy efficiency.
Collapse
Affiliation(s)
- León Mauricio Juárez-Paz
- Neuromodulation Research and Advanced Concepts, Boston Scientific Corporation, Valencia, CA, United States
| |
Collapse
|