1
|
Huanggu H, Yang D, Zheng Y. Blood immunological profile of abdominal aortic aneurysm based on autoimmune injury. Autoimmun Rev 2023; 22:103258. [PMID: 36563768 DOI: 10.1016/j.autrev.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Abdominal aortic aneurysm (AAA) occupies a large part of aorta aneurysm, and if there's no timely intervention or treatment, the risks of rupture and death would rise sharply. With the depth of research in AAA, more and more evidence showed correlations between AAA and autoimmune injury. Currently, a variety of bioactive peptides and cells have been confirmed to be related with AAA progression. Despite the tremendous progress, more than half researches were sampling from lesion tissues, which would be difficult to obtain. Given that the intrusiveness and convenience, serological test take advantages in initial diagnosis. Here we review blood biomarkers associated with autoimmune injury work in AAA evolution, aiming to make a profile on blood immune substances of AAA and provide a thought for potential clinical practice.
Collapse
Affiliation(s)
- Haotian Huanggu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Ren J, Wu J, Tang X, Chen S, Wang W, Lv Y, Wu L, Yang D, Zheng Y. Ageing- and AAA-associated differentially expressed proteins identified by proteomic analysis in mice. PeerJ 2022; 10:e13129. [PMID: 35637715 PMCID: PMC9147329 DOI: 10.7717/peerj.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a disease of high prevalence in old age, and its incidence gradually increases with increasing age. There were few studies about differences in the circulatory system in the incidence of AAA, mainly because younger patients with AAA are fewer and more comorbid nonatherosclerotic factors. Method We induced AAA in ApoE-/- male mice of different ages (10 or 24 weeks) and obtained plasma samples. After the top 14 most abundant proteins were detected, the plasma was analyzed by a proteomic study using the data-dependent acquisition (DDA) technique. The proteomic results were compared between different groups to identify age-related differentially expressed proteins (DEPs) in the circulation that contribute to AAA formation. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses were performed by R software. The top 10 proteins were determined with the MCC method of Cytoscape, and transcription factor (TF) prediction of the DEPs was performed with iRegulon (Cytoscape). Results The aortic diameter fold increase was higher in the aged group than in the youth group (p < 0.01). Overall, 92 DEPs related to age and involved in AAA formation were identified. GO analysis of the DEPs showed enrichment of the terms wounding healing, response to oxidative stress, regulation of body fluid levels, ribose phosphate metabolic process, and blood coagulation. The KEGG pathway analysis showed enrichment of the terms platelet activation, complement and coagulation cascades, glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino acids, and ECM-receptor interaction. The top 10 proteins were Tpi1, Eno1, Prdx1, Ppia, Prdx6, Vwf, Prdx2, Fga, Fgg, and Fgb, and the predicted TFs of these proteins were Nfe2, Srf, Epas1, Tbp, and Hoxc8. Conclusion The identified proteins related to age and involved in AAA formation were associated with the response to oxidative stress, coagulation and platelet activation, and complement and inflammation pathways, and the TFs of these proteins might be potential targets for AAA treatments. Further experimental and biological studies are needed to elucidate the role of these age-associated and AAA-related proteins in the progression of AAA.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China,State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China,State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|