Shu G, Dai C, Yusuf A, Sun H, Deng X. Limonin relieves TGF-β-induced hepatocyte EMT and hepatic stellate cell activation in vitro and CCl
4-induced liver fibrosis in mice via upregulating Smad7 and subsequent suppression of TGF-β/Smad cascade.
J Nutr Biochem 2022;
107:109039. [PMID:
35533902 DOI:
10.1016/j.jnutbio.2022.109039]
[Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Liver fibrosis is a pathological process as a result of intrahepatic deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) of hepatocytes and activation of hepatic stellate cells (HSCs) both play important roles in the etiology of liver fibrosis. Here, we found that limonin repressed transforming growth factor-β1 (TGF-β)-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. In both kinds of cells, limonin suppressed TGF-β-provoked Smad2/3 C-terminal phosphorylation and subsequent nuclear translocation. Transcription of Smad2/3-downstream genes was in turn reduced. However, limonin exerted few effects on Smad2/3 phosphorylation at linker region. Mechanistically, limonin increased Smad7 at mRNA level in both AML-12 and LX-2 cells. Knockdown of Smad7 abrogated inhibitory effects of limonin on TGF-β-induced EMT in AML-12 cells and activation of LX-2 cells. Further studies revealed that limonin alleviated mouse liver fibrosis induced by CCl4. In livers of model mice, limonin upregulated Smad7 and declined C-terminal phosphorylation and nuclear translocation of Smad2/3. Transcription of Smad2/3-responsive genes was also attenuated. Our findings indicated that limonin inhibits TGF-β-induced EMT of hepatocytes and activation of HSCs in vitro and CCl4-induced liver fibrosis in mice. Upregulated Smad7 which suppresses Smad2/3-dependent gene transcription is implicated in the hepatoprotective activity of limonin.
Collapse