Jia YJ, Ghi T, Pereira S, Gracia Perez-Bonfils A, Chandraharan E. Pathophysiological interpretation of fetal heart rate tracings in clinical practice.
Am J Obstet Gynecol 2023;
228:622-644. [PMID:
37270259 DOI:
10.1016/j.ajog.2022.05.023]
[Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/05/2023]
Abstract
The onset of regular, strong, and progressive uterine contractions may result in both mechanical (compression of the fetal head and/or umbilical cord) and hypoxic (repetitive and sustained compression of the umbilical cord or reduction in uteroplacental oxygenation) stresses to a human fetus. Most fetuses are able to mount effective compensatory responses to avoid hypoxic-ischemic encephalopathy and perinatal death secondary to the onset of anaerobic metabolism within the myocardium, culminating in myocardial lactic acidosis. In addition, the presence of fetal hemoglobin, which has a higher affinity for oxygen even at low partial pressures of oxygen than the adult hemoglobin, especially increased amounts of fetal hemoglobin (ie, 180-220 g/L in fetuses vs 110-140 g/L in adults), helps the fetus to withstand hypoxic stresses during labor. Different national and international guidelines are currently being used for intrapartum fetal heart rate interpretation. These traditional classification systems for fetal heart rate interpretation during labor are based on grouping certain features of fetal heart rate (ie, baseline fetal heart rate, baseline variability, accelerations, and decelerations) into different categories (eg, category I, II, and III tracings, "normal, suspicious, and pathologic" or "normal, intermediary, and abnormal"). These guidelines differ from each other because of the features included within different categories and because of their arbitrary time limits stipulated for each feature to warrant an obstetrical intervention. This approach fails to individualize care because the "ranges of normality" for stipulated parameters apply to the population of human fetuses and not to the individual fetus in question. Moreover, different fetuses have different reserves and compensatory responses and different intrauterine environments (presence of meconium staining of amniotic fluid, intrauterine inflammation, and the nature of uterine activity). Pathophysiological interpretation of fetal heart rate tracing is based on the application of the knowledge of fetal responses to intrapartum mechanical and/or hypoxic stress in clinical practice. Both experimental animal studies and observational human studies suggest that, just like adults undertaking a treadmill exercise, human fetuses show predictable compensatory responses to a progressively evolving intrapartum hypoxic stress. These responses include the onset of decelerations to reduce myocardial workload and preserve aerobic metabolism, loss of accelerations to abolish nonessential somatic body movements, and catecholamine-mediated increases in the baseline fetal heart rate and effective redistribution and centralization to protect the fetal central organs (ie, the heart, brain, and adrenal glands), which are essential for intrauterine survival. Moreover, it is essential to incorporate the clinical context (progress of labor, fetal size and reserves, presence of meconium staining of amniotic fluid and intrauterine inflammation, and fetal anemia) and understand the features suggestive of fetal compromise in nonhypoxic pathways (eg, chorioamnionitis and fetomaternal hemorrhage). It is important to appreciate that the timely recognition of the speed of onset of intrapartum hypoxia (ie, acute, subacute, and gradually evolving) and preexisting uteroplacental insufficiency (ie, chronic hypoxia) on fetal heart rate tracing is crucial to improve perinatal outcomes.
Collapse