1
|
Jain SM, Nagainallur Ravichandran S, Murali Kumar M, Banerjee A, Sun-Zhang A, Zhang H, Pathak R, Sun XF, Pathak S. Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review. Cancer Biol Ther 2024; 25:2317999. [PMID: 38445632 PMCID: PMC10936619 DOI: 10.1080/15384047.2024.2317999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/β-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.
Collapse
Affiliation(s)
- Samatha M Jain
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Shruthi Nagainallur Ravichandran
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Makalakshmi Murali Kumar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Orebro University, Örebro, Sweden
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| |
Collapse
|
2
|
Ammous-Boukhris N, Abdelmaksoud-Dammak R, Ben Ayed-Guerfali D, Guidara S, Jallouli O, Kamoun H, Charfi Triki C, Mokdad-Gargouri R. Case report: Compound heterozygous variants detected by next-generation sequencing in a Tunisian child with ataxia-telangiectasia. Front Neurol 2024; 15:1344018. [PMID: 38882696 PMCID: PMC11178103 DOI: 10.3389/fneur.2024.1344018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency disorder (PID) caused by biallelic mutations occurring in the serine/threonine protein kinase (ATM) gene. The major role of nuclear ATM is the coordination of cell signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoints. Defects in ATM functions lead to A-T syndrome with phenotypic heterogeneity. Our study reports the case of a Tunisian girl with A-T syndrome carrying a compound heterozygous mutation c.[3894dupT]; p.(Ala1299Cysfs3;rs587781823), with a splice acceptor variant: c.[5763-2A>C;rs876659489] in the ATM gene that was identified by next-generation sequencing (NGS). Further genetic analysis of the family showed that the mother carried the c.[5763-2A>C] splice acceptor variant, while the father harbored the c.[3894dupT] variant in the heterozygous state. Molecular analysis provides the opportunity for accurate diagnosis and timely management in A-T patients with chronic progressive disease, especially infections and the risk of malignancies. This study characterizes for the first time the identification of compound heterozygous ATM pathogenic variants by NGS in a Tunisian A-T patient. Our study outlines the importance of molecular genetic testing for A-T patients, which is required for earlier detection and reducing the burden of disease in the future, using the patients' families.
Collapse
Affiliation(s)
- Nihel Ammous-Boukhris
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rania Abdelmaksoud-Dammak
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dorra Ben Ayed-Guerfali
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Souhir Guidara
- Department of Human Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | - Olfa Jallouli
- Department of NeuroPediatry, Hedi Chaker Hospital, Sfax, Tunisia
| | - Hassen Kamoun
- Department of Human Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | | | - Raja Mokdad-Gargouri
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Bhai P, Levy MA, Rooney K, Carere DA, Reilly J, Kerkhof J, Volodarsky M, Stuart A, Kadour M, Panabaker K, Schenkel LC, Lin H, Ainsworth P, Sadikovic B. Analysis of Sequence and Copy Number Variants in Canadian Patient Cohort With Familial Cancer Syndromes Using a Unique Next Generation Sequencing Based Approach. Front Genet 2021; 12:698595. [PMID: 34326862 PMCID: PMC8314385 DOI: 10.3389/fgene.2021.698595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hereditary cancer predisposition syndromes account for approximately 10% of cancer cases. Next generation sequencing (NGS) based multi-gene targeted panels is now a frontline approach to identify pathogenic mutations in cancer predisposition genes in high-risk families. Recent evolvement of NGS technologies have allowed simultaneous detection of sequence and copy number variants (CNVs) using a single platform. In this study, we have analyzed frequency and nature of sequence variants and CNVs, in a Canadian cohort of patients, suspected with hereditary cancer syndrome, referred for genetic testing following specific genetic testing guidelines based on patient's personal and/or family history of cancer. Methods A 2870 patients were subjected to a single NGS based multi-gene targeted hereditary cancer panel testing algorithm to identify sequence variants and CNVs in cancer predisposition genes at our reference laboratory in Southwestern Ontario. CNVs identified by NGS were confirmed by alternative techniques like Multiplex ligation-dependent probe amplification (MLPA). Results A 15% (431/2870) patients had a pathogenic variant and 36% (1032/2870) had a variant of unknown significance (VUS), in a cancer susceptibility gene. A total of 287 unique pathogenic variant were identified, out of which 23 (8%) were novel. CNVs identified by NGS based approach accounted for 9.5% (27/287) of pathogenic variants, confirmed by alternate techniques with high accuracy. Conclusion This study emphasizes the utility of NGS based targeted testing approach to identify both sequence and CNVs in patients suspected with hereditary cancer syndromes in clinical setting and expands the mutational spectrum of high and moderate penetrance cancer predisposition genes.
Collapse
Affiliation(s)
- Pratibha Bhai
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Michael A Levy
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Kathleen Rooney
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Deanna Alexis Carere
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Michael Volodarsky
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Alan Stuart
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada
| | - Mike Kadour
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Karen Panabaker
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - Laila C Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Hanxin Lin
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Peter Ainsworth
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
4
|
Stucci LS, Internò V, Tucci M, Perrone M, Mannavola F, Palmirotta R, Porta C. The ATM Gene in Breast Cancer: Its Relevance in Clinical Practice. Genes (Basel) 2021; 12:genes12050727. [PMID: 34068084 PMCID: PMC8152746 DOI: 10.3390/genes12050727] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Molecular alterations of the Ataxia-telangiectasia (AT) gene are frequently detected in breast cancer (BC), with an incidence ranging up to 40%. The mutated form, the Ataxia-telangiectasia mutated (ATM) gene, is involved in cell cycle control, apoptosis, oxidative stress, and telomere maintenance, and its role as a risk factor for cancer development is well established. Recent studies have confirmed that some variants of ATM are associated with an increased risk of BC development and a worse prognosis. Thus, many patients harboring ATM mutations develop intermediate- and high-grade disease, and there is a higher rate of lymph node metastatic involvement. The evidence concerning a correlation of ATM gene mutations and the efficacy of therapeutic strategies in BC management are controversial. In fact, ATM mutations may sensitize cancer cells to platinum-derived drugs, as BRCA1/2 mutations do, whereas their implications in objective responses to hormonal therapy or target-based agents are not well defined. Herein, we conducted a review of the role of ATM gene mutations in BC development, prognosis, and different treatment strategies.
Collapse
Affiliation(s)
- Luigia Stefania Stucci
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
- Correspondence:
| | - Valeria Internò
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Marco Tucci
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
- National Cancer Research Center, Tumori Institute IRCCS Giovanni Paolo II, 70121 Bari, Italy
| | - Martina Perrone
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Francesco Mannavola
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, University of Bari, 70121 Bari, Italy;
| | - Camillo Porta
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| |
Collapse
|
5
|
Xu HX, Zhu P, Zheng YY, Zhang X, Chen YQ, Qiao LC, Zhang YF, Jiang F, Li YR, Chen HJ, Chen YG, Gu YF, Yang BL. Molecular screening and clinicopathologic characteristics of Lynch-like syndrome in a Chinese colorectal cancer cohort. Am J Cancer Res 2020; 10:3920-3934. [PMID: 33294277 PMCID: PMC7716154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancers (CRC) with microsatellite instability (MSI) or mismatch repair-deficiency (dMMR), but without detectable MMR germline mutations are termed Lynch-like syndrome (LLS). We assess the clinicopathologic and molecular characteristics of LLS tumors and the proportion in LLS, which remain poorly investigated in China. We enrolled 404 CRC patients with surgery in our institution from 2014 to 2018. LLS tumors were detected by a molecular stratification based on MMR protein expression, MLH1 methylation and MMR gene mutation. LLS tumors were profiled for germline mutations in 425 cancer-relevant genes. Among 42 MMR-deficient tumors, 7 (16.7%) were attributable to MLH1 methylation and 7 (16.7%) to germline mutations, leaving 28 LLS cases (66.6%). LLS tumors were diagnosed at a mean age of 60.7 years, had an almost equivalent ratio among rectum, left colon and right colon, and had high rates of lymph node metastases (50%, 4/28 N2). Most MMR gene mutations (88.2%, 15/17) in LLS tumors were variants of unknown significance (VUS). Two novel frameshift mutations were detected in ATM and ARID1A, which are emerging as candidate responsible genes for LLS. In this study, 28 (66.6%) MMRd tumors were classified as LLS, which were significantly higher than reports of western countries. LLS tumors were more likely to carry lymph node metastases. However, it's hard to differentiated LLS tumors from LS through family history, tumor location, histological type of tumors, immunohistochemistry (IHC) for MMR proteins and MSI analysis.
Collapse
Affiliation(s)
- Hai-Xia Xu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Ping Zhu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Yan-Ying Zheng
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Xiang Zhang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Yi-Qi Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Li-Chao Qiao
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Yi-Fen Zhang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Feng Jiang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - You-Ran Li
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Hong-Jin Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Yun-Fei Gu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| | - Bo-Lin Yang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineNanjing, Jiangsu Province, China
| |
Collapse
|
6
|
刘 鹰, 张 瑜, 田 焱. [Expressions of HELQ and RAD51C in endometrial stromal sarcoma and their clinical significance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:936-941. [PMID: 32895148 PMCID: PMC7386226 DOI: 10.12122/j.issn.1673-4254.2020.07.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To observe the expression of HELQ and RAD51C in normal endometrial and endometrial stromal sarcoma (ESS) and analyze their correlation with the clinical features of the patients. METHODS The expressions of HELQ and RAD51C proteins were detected by immunohistochemical staining in normal endometrial tissues (14 cases) and tumor tissues from patients with ESS (37 cases) treated in Hunan Provincial Cancer Hospital from January, 2013 to December, 2016. The correlations of the expressions of the two proteins with the patients'age, FIGO staging, tissue type, tumor size, and lymph node metastasis were analyzed. RESULTS Immunohistochemical staining showed that the expressions of HELQ and RAD51C were both decreased in ESS patients compared with the normal group, and there was a positive correlation between HELQ and RAD51C expression (P < 0.05). HELQ expression in ESS was correlated with the tumor size and type. The expressions of HELQ and RAD51C were not correlated with the patients' age, FIGO stage and status of lymph node metastasis (P > 0.05). CONCLUSIONS Homologous recombination- directed DNA repair involving HELQ and RAD51C may participate in the occurrence and progression of ESS.
Collapse
Affiliation(s)
- 鹰 刘
- 株洲恺德心血管病医院妇科,湖南 株洲 412000Department of Gynecology, Zhuzhou Kind Cardiovascular Disease Hospital, Zhuzhou 412000, China
| | - 瑜 张
- 中南大学湘雅医院妇产科,湖南 长沙 410008Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 焱 田
- 中南大学湘雅医院妇产科,湖南 长沙 410008Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|