1
|
von Rauchhaupt E, Klaus M, Ribeiro A, Honarpisheh M, Li C, Liu M, Köhler P, Adamowicz K, Schmaderer C, Lindenmeyer M, Steiger S, Anders HJ, Lech M. GDF-15 Suppresses Puromycin Aminonucleoside-Induced Podocyte Injury by Reducing Endoplasmic Reticulum Stress and Glomerular Inflammation. Cells 2024; 13:637. [PMID: 38607075 PMCID: PMC11011265 DOI: 10.3390/cells13070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.
Collapse
Affiliation(s)
- Ekaterina von Rauchhaupt
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Martin Klaus
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Andrea Ribeiro
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Mohsen Honarpisheh
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Chenyu Li
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Min Liu
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Paulina Köhler
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30-387 Krakow, Poland;
| | - Christoph Schmaderer
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stefanie Steiger
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Hans-Joachim Anders
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Maciej Lech
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| |
Collapse
|
2
|
Medina Rangel PX, Cross E, Liu C, Pedigo CE, Tian X, Gutiérrez-Calabrés E, Nagata S, Priyadarshini A, Lerner G, Bunda P, Perincheri S, Gu J, Zhao H, Wang Y, Inoue K, Ishibe S. Cell Cycle and Senescence Regulation by Podocyte Histone Deacetylase 1 and 2. J Am Soc Nephrol 2023; 34:433-450. [PMID: 36414418 PMCID: PMC10103311 DOI: 10.1681/asn.2022050598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
SIGNIFICANCE STATEMENT The loss of integrity of the glomerular filtration barrier results in proteinuria that is often attributed to podocyte loss. Yet how damaged podocytes are lost remains unknown. Germline loss of murine podocyte-associated Hdac1 and Hdac2 ( Hdac1/2 ) results in proteinuria and collapsing glomerulopathy due to sustained double-stranded DNA damage. Hdac1/2 deletion induces loss of podocyte quiescence, cell cycle entry, arrest in G1, and podocyte senescence, observed both in vivo and in vitro . Through the senescence secretory associated phenotype, podocytes secrete proteins that contribute to their detachment. These results solidify the role of HDACs in cell cycle regulation and senescence, providing important clues in our understanding of how podocytes are lost following injury. BACKGROUND Intact expression of podocyte histone deacetylases (HDAC) during development is essential for maintaining a normal glomerular filtration barrier because of its role in modulating DNA damage and preventing premature senescence. METHODS Germline podocyte-specific Hdac1 and 2 ( Hdac1 / 2 ) double-knockout mice were generated to examine the importance of these enzymes during development. RESULTS Podocyte-specific loss of Hdac1 / 2 in mice resulted in severe proteinuria, kidney failure, and collapsing glomerulopathy. Hdac1 / 2 -deprived podocytes exhibited classic characteristics of senescence, such as senescence-associated β-galactosidase activity and lipofuscin aggregates. In addition, DNA damage, likely caused by epigenetic alterations such as open chromatin conformation, not only resulted in podocyte cell-cycle entry as shown in vivo by Ki67 expression and by FUCCI-2aR mice, but also in p21-mediated cell-cycle arrest. Through the senescence secretory associated phenotype, the damaged podocytes secreted proinflammatory cytokines, growth factors, and matrix metalloproteinases, resulting in subsequent podocyte detachment and loss, evidenced by senescent podocytes in urine. CONCLUSIONS Hdac1 / 2 plays an essential role during development. Loss of these genes in double knockout mice leads to sustained DNA damage and podocyte senescence and loss.
Collapse
Affiliation(s)
| | - Elizabeth Cross
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chang Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Soichiro Nagata
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Anupama Priyadarshini
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gabriel Lerner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Patricia Bunda
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sudhir Perincheri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
Sahiri V, Caron J, Roger E, Desterke C, Ghachem K, Mohamadou I, Serre J, Prakoura N, Fellahi S, Placier S, Adriouch S, Zhang L, Chadjichristos CE, Chatziantoniou C, Lorenzo HK, Boffa JJ. The Angiogenesis Inhibitor Isthmin-1 (ISM1) Is Overexpressed in Experimental Models of Glomerulopathy and Impairs the Viability of Podocytes. Int J Mol Sci 2023; 24:ijms24032723. [PMID: 36769045 PMCID: PMC9916724 DOI: 10.3390/ijms24032723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease and remains without specific treatment. To identify new events during FSGS progression, we used an experimental model of FSGS associated with nephroangiosclerosis in rats injected with L-NAME (Nω-nitro-L-arginine methyl ester). After transcriptomic analysis we focused our study on the role of Isthmin-1 (ISM1, an anti-angiogenic protein involved in endothelial cell apoptosis. We studied the renal expression of ISM1 in L-NAME rats and other models of proteinuria, particularly at the glomerular level. In the L-NAME model, withdrawal of the stimulus partially restored basal ISM1 levels, along with an improvement in renal function. In other four animal models of proteinuria, ISM1 was overexpressed and localized in podocytes while the renal function was degraded. Together these facts suggest that the glomerular expression of ISM1 correlates directly with the progression-recovery of the disease. Further in vitro experiments demonstrated that ISM1 co-localized with its receptors GRP78 and integrin αvβ5 on podocytes. Treatment of human podocytes with low doses of recombinant ISM1 decreased cell viability and induced caspase activation. Stronger ISM1 stimuli in podocytes dropped mitochondrial membrane potential and induced nuclear translocation of apoptosis-inducing factor (AIF). Our results suggest that ISM1 participates in the progression of glomerular diseases and promotes podocyte apoptosis in two different complementary ways: one caspase-dependent and one caspase-independent associated with mitochondrial destabilization.
Collapse
Affiliation(s)
- Virgilia Sahiri
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Jonathan Caron
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Elena Roger
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Christophe Desterke
- Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
- Université Paris Saclay, INSERM UA/09 UMR-S 935, 94800 Villejuif, France
| | - Khalil Ghachem
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Inna Mohamadou
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Justine Serre
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Niki Prakoura
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Soraya Fellahi
- Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75013 Paris, France
| | - Sandrine Placier
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Sahil Adriouch
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Lu Zhang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Christos E. Chadjichristos
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Christos Chatziantoniou
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Hans Kristian Lorenzo
- Université Paris Saclay, INSERM UA/09 UMR-S 935, 94800 Villejuif, France
- Department of Nephrology, Bicêtre Hospital, AP-HP, 94270 Le Kremlin-Bicêtre, France
- Université Paris Saclay, INSERM UMR_S 1197, 94803 Villejuif, France
| | - Jean-Jacques Boffa
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
- Département Néphrologie et Dialyses, Tenon Hospital, AP-HP, 75020 Paris, France
- Correspondence:
| |
Collapse
|
4
|
Yamamoto K, Okabe M, Tanaka K, Yokoo T, Pastan I, Araoka T, Osafune K, Udagawa T, Koizumi M, Matsusaka T. Podocytes are lost from glomeruli before completing apoptosis. Am J Physiol Renal Physiol 2022; 323:F515-F526. [PMID: 36049065 PMCID: PMC9602714 DOI: 10.1152/ajprenal.00080.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although apoptosis of podocytes has been widely reported in in vitro studies, it has been less frequently and less definitively documented in in vivo situations. To investigate this discrepancy, we analyzed the dying process of podocytes in vitro and in vivo using LMB2, a human (h)CD25-directed immunotoxin. LMB2 induced cell death within 2 days in 56.8 ± 13.6% of cultured podocytes expressing hCD25 in a caspase-3, Bak1, and Bax-dependent manner. LMB2 induced typical apoptotic features, including TUNEL staining and fragmented nuclei without lactate dehydrogenase leakage. In vivo, LMB2 effectively eliminated hCD25-expressing podocytes in NEP25 mice. Podocytes injured by LMB2 were occasionally stained for cleaved caspase-3 and cleaved lamin A but never for TUNEL. Urinary sediment contained TUNEL-positive podocytes. To examine the effect of glomerular filtration, we performed unilateral ureteral obstruction in NEP25 mice treated with LMB2 1 day before euthanasia. In the obstructed kidney, glomeruli contained significantly more cleaved lamin A-positive podocytes than those in the contralateral kidney (50.1 ± 5.4% vs. 29.3 ± 4.1%, P < 0.001). To further examine the dying process without glomerular filtration, we treated kidney organoids generated from nephron progenitor cells of NEP25 mice with LMB2. Podocytes showed TUNEL staining and nuclear fragmentation. These results indicate that on activation of apoptotic caspases, podocytes are detached and lost in the urine before nuclear fragmentation and that the physical force of glomerular filtration facilitates detachment. This phenomenon may be the reason why definitive apoptosis is not observed in podocytes in vivo.NEW & NOTEWORTHY This report clarifies why morphologically definitive apoptosis is not observed in podocytes in vivo. When caspase-3 is activated in podocytes, these cells are immediately detached from the glomerulus and lost in the urine before DNA fragmentation occurs. Detachment is facilitated by glomerular filtration. This phenomenon explains why podocytes in vivo rarely show TUNEL staining and never apoptotic bodies.
Collapse
Affiliation(s)
- Kazuyoshi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Keiko Tanaka
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tomohiro Udagawa
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Masahiro Koizumi
- Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
- Institute of Medical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
5
|
Singhal R, Lukose R, Carr G, Moktar A, Gonzales-Urday AL, Rouchka EC, Vajravelu BN. Differential Expression of Long Noncoding RNAs in Murine Myoblasts After Short Hairpin RNA-Mediated Dysferlin Silencing In Vitro: Microarray Profiling. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e33186. [PMID: 38935964 PMCID: PMC11135227 DOI: 10.2196/33186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/02/2022] [Accepted: 05/10/2022] [Indexed: 06/29/2024]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are noncoding RNA transcripts greater than 200 nucleotides in length and are known to play a role in regulating the transcription of genes involved in vital cellular functions. We hypothesized the disease process in dysferlinopathy is linked to an aberrant expression of lncRNAs and messenger RNAs (mRNAs). OBJECTIVE In this study, we compared the lncRNA and mRNA expression profiles between wild-type and dysferlin-deficient murine myoblasts (C2C12 cells). METHODS LncRNA and mRNA expression profiling were performed using a microarray. Several lncRNAs with differential expression were validated using quantitative real-time polymerase chain reaction. Gene Ontology (GO) analysis was performed to understand the functional role of the differentially expressed mRNAs. Further bioinformatics analysis was used to explore the potential function, lncRNA-mRNA correlation, and potential targets of the differentially expressed lncRNAs. RESULTS We found 3195 lncRNAs and 1966 mRNAs that were differentially expressed. The chromosomal distribution of the differentially expressed lncRNAs and mRNAs was unequal, with chromosome 2 having the highest number of lncRNAs and chromosome 7 having the highest number of mRNAs that were differentially expressed. Pathway analysis of the differentially expressed genes indicated the involvement of several signaling pathways including PI3K-Akt, Hippo, and pathways regulating the pluripotency of stem cells. The differentially expressed genes were also enriched for the GO terms, developmental process and muscle system process. Network analysis identified 8 statistically significant (P<.05) network objects from the upregulated lncRNAs and 3 statistically significant network objects from the downregulated lncRNAs. CONCLUSIONS Our results thus far imply that dysferlinopathy is associated with an aberrant expression of multiple lncRNAs, many of which may have a specific function in the disease process. GO terms and network analysis suggest a muscle-specific role for these lncRNAs. To elucidate the specific roles of these abnormally expressed noncoding RNAs, further studies engineering their expression are required.
Collapse
Affiliation(s)
- Richa Singhal
- Department of Biochemistry and Molecular Genetics, KY IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - Rachel Lukose
- Department of Physician Assistant Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Gwenyth Carr
- Department of Medical and Molecular Biology, School of Arts and Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Afsoon Moktar
- Department of Physician Assistant Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Ana Lucia Gonzales-Urday
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, KY IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - Bathri N Vajravelu
- Department of Physician Assistant Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| |
Collapse
|
6
|
Chen B, Alam Z, Ge Y, Dworkin L, Gong R. Pharmacological Melanocortin 5 Receptor Activation Attenuates Glomerular Injury and Proteinuria in Rats With Puromycin Aminonucleoside Nephrosis. Front Physiol 2022; 13:887641. [PMID: 35721571 PMCID: PMC9198460 DOI: 10.3389/fphys.2022.887641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical evidence indicates that the melanocortin peptide ACTH is effective in inducing remission of nephrotic glomerulopathies like minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), including those resistant to steroids. This suggests that a steroid-independent melancortinergic mechanism may contribute. However, the type of melanocortin receptor (MCR) that conveys this beneficial effect as well as the underlying mechanisms remain controversial. Burgeoning evidence suggests that MC5R is expressed in glomeruli and may be involved in glomerular pathobiology. This study aims to test the effectiveness of a novel highly selective MC5R agonist (MC5R-A) in puromycin aminonucleoside (PAN) nephrosis. Upon PAN injury, rats developed evident proteinuria on day 5, denoting an established nephrotic glomerulopathy. Following vehicle treatment, proteinuria continued to persist on day 14 with prominent histologic signs of podocytopathy, marked by ultrastructural glomerular lesions, including extensive podocyte foot process effacement. Concomitantly, there was loss of podocyte homeostatic markers, such as synaptopodin and podocin, and de novo expression of the podocyte injury marker desmin. Treatment with MC5R-A attenuated urine protein excretion and mitigated the loss of podocyte marker proteins, resulting in improved podocyte ultrastructural changes. In vitro in cultured podocytes, MC5R-A prevented the PAN-induced disruption of actin cytoskeleton integrity and apoptosis. MC5R-A treatment in PAN-injured podocytes also reinstated inhibitory phosphorylation and thus averted hyperactivity of GSK3β, a convergent point of multiple podocytopathic pathways. Collectively, pharmacologic activation of MC5R by using the highly selective small-molecule agonist is likely a promising therapeutic strategy to improve proteinuria and glomerular injury in protenuric nephropathies.
Collapse
Affiliation(s)
- Bohan Chen
- Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
- The Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
- Center for Hypertension and Precision Medicine, University of Toledo Medical Center, Toledo, OH, United States
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Zubia Alam
- Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
| | - Yan Ge
- Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
| | - Lance Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo Medical Center, Toledo, OH, United States
- The Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
- Center for Hypertension and Precision Medicine, University of Toledo Medical Center, Toledo, OH, United States
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- *Correspondence: Rujun Gong,
| |
Collapse
|
7
|
Long C, Lin Q, Mo J, Xiao Y, Xie Y. Hirudin attenuates puromycin aminonucleoside‐induced glomerular podocyte injury by inhibiting MAPK‐mediated endoplasmic reticulum stress. Drug Dev Res 2022; 83:1047-1056. [PMID: 35277865 DOI: 10.1002/ddr.21932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chunli Long
- College of Basic Medicine Guangxi University of Traditional Chinese Medicine Nanning China
| | - Qiang Lin
- Department of Nephrology The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine Nanning China
| | - Junlin Mo
- College of Graduate school Guangxi University of Traditional Chinese Medicine Nanning China
| | - Yangping Xiao
- College of Graduate school Guangxi University of Traditional Chinese Medicine Nanning China
| | - Yongxiang Xie
- Department of Nephrology The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine Nanning China
| |
Collapse
|
8
|
Han H, Zhang Y, Peng G, Li L, Yang J, Yuan Y, Xu Y, Liu ZR. Extracellular PKM2 facilitates organ-tissue fibrosis progression. iScience 2021; 24:103165. [PMID: 34693222 PMCID: PMC8517170 DOI: 10.1016/j.isci.2021.103165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023] Open
Abstract
Persistent activation of fibroblasts and resistance of myofibroblasts to turnover play important roles in organ-tissue fibrosis development and progression. The mechanism that mediates apoptosis resistance of myofibroblasts is not understood. Here, we report that myofibroblasts express and secrete PKM2. Extracellular PKM2 (EcPKM2) facilitates progression of fibrosis by protecting myofibroblasts from apoptosis. EcPKM2 upregulates arginase-1 expression in myofibroblasts and therefore facilitates proline biosynthesis and subsequent collagen production. EcPKM2 interacts with integrin αvβ3 on myofibroblasts to activate FAK-PI3K signaling axis. Activation of FAK-PI3K by EcPKM2 activates downstream NF-κB survival pathway to prevent myofibroblasts from apoptosis. On the other hand, activation of FAK- PI3K by EcPKM2 suppresses PTEN to subsequently upregulate arginase-1 in myofibroblasts. Our studies uncover an important mechanism for organ fibrosis progression. More importantly, an antibody disrupting the interaction between PKM2 and integrin αvβ3 is effective in reversing fibrosis, suggesting a possible therapeutic strategy and target for treatment of organ fibrosis.
Collapse
Affiliation(s)
- Hongwei Han
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yinwei Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Liangwei Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yiting Xu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
9
|
Growth and Drug Interaction Monitoring of NIH 3T3 Cells by Image Analysis and Capacitive Biosensor. MICROMACHINES 2021; 12:mi12101248. [PMID: 34683298 PMCID: PMC8540853 DOI: 10.3390/mi12101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Capacitive biosensors are manufactured on glass slides using the semiconductor process to monitor cell growth and cell–drug interactions in real time. Capacitance signals are continuously monitored for each 10 min interval during a 48 h period, with the variations of frequency from 1 kHz to 1 MHz. The capacitance values showed a gradual increase with the increase in NIH 3T3 cell numbers. After 48 h of growth, 6.67 μg/mL puromycin is injected for the monitoring of the cell–drug interaction. The capacitance values rapidly increased during a period of about 10 h, reflecting the rapid increase in the cell numbers. In this study, we monitored the state of cells and the cell–drug interactions using the developed capacitive biosensor. Additionally, we monitored the state of cell behavior using a JuLiTM Br&FL microscope. The monitoring of cell state by means of a capacitive biosensor is more sensitive than confluence measuring using a JuLiTM Br&FL microscope image. The developed capacitive biosensor could be applied in a wide range of bio-medical areas; for example, non-destructive real-time cell growth and cell–drug interaction monitoring.
Collapse
|
10
|
Frank CN, Hou X, Petrosyan A, Villani V, Zhao R, Hansen JR, Clair G, Salem F, De Filippo RE, Cravedi P, Lemley KV, Perin L. Effect of disease progression on the podocyte cell cycle in Alport Syndrome. Kidney Int 2021; 101:106-118. [PMID: 34562503 DOI: 10.1016/j.kint.2021.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/18/2021] [Accepted: 08/19/2021] [Indexed: 01/16/2023]
Abstract
Progression of glomerulosclerosis is associated with loss of podocytes with subsequent glomerular tuft instability. It is thought that a diminished number of podocytes may be able to preserve tuft stability through cell hypertrophy associated with cell cycle reentry. At the same time, reentry into the cell cycle risks podocyte detachment if podocytes cross the G1/S checkpoint and undergo abortive cytokinesis. In order to study cell cycle dynamics during chronic kidney disease (CKD) development, we used a FUCCI model (fluorescence ubiquitination-based cell cycle indicator) of mice with X-linked Alport Syndrome. This model exhibits progressive CKD and expresses fluorescent reporters of cell cycle stage exclusively in podocytes. With the development of CKD, an increasing fraction of podocytes in vivo were found to be in G1 or later cell cycle stages. Podocytes in G1 and G2 were hypertrophic. Heterozygous female mice, with milder manifestations of CKD, showed G1 fraction numbers intermediate between wild-type and male Alport mice. Proteomic analysis of podocytes in different cell cycle phases showed differences in cytoskeleton reorganization and metabolic processes between G0 and G1 in disease. Additionally, in vitro experiments confirmed that damaged podocytes reentered the cell cycle comparable to podocytes in vivo. Importantly, we confirmed the upregulation of PDlim2, a highly expressed protein in podocytes in G1, in a patient with Alport Syndrome, confirming our proteomics data in the human setting. Thus, our data showed that in the Alport model of progressive CKD, podocyte cell cycle distribution is altered, suggesting that cell cycle manipulation approaches may have a role in the treatment of various progressive glomerular diseases characterized by podocytopenia.
Collapse
Affiliation(s)
- Camille Nicolas Frank
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA; Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaogang Hou
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Rui Zhao
- Biological Science Division, Integrative Omics, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joshua R Hansen
- Biological Science Division, Integrative Omics, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Science Division, Integrative Omics, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Fadi Salem
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roger E De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Paolo Cravedi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin V Lemley
- Division of Nephrology, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
11
|
Wang WW, Liu YL, Wang MZ, Li H, Liu BH, Tu Y, Yuan CC, Fang QJ, Chen JX, Wang J, Fu Y, Wan ZY, Wan YG, Wu W. Inhibition of Renal Tubular Epithelial Mesenchymal Transition and Endoplasmic Reticulum Stress-Induced Apoptosis with Shenkang Injection Attenuates Diabetic Tubulopathy. Front Pharmacol 2021; 12:662706. [PMID: 34408650 PMCID: PMC8367077 DOI: 10.3389/fphar.2021.662706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The proximal renal tubule plays a critical role in diabetic kidney disease (DKD) progression. Early glomerular disease in DKD triggers a cascade of injuries resulting in renal tubulointerstitial disease. These pathophysiological responses are collectively described as diabetic tubulopathy (DT). Thus, therapeutic strategies targeting DT hold significant promise for early DKD treatment. Shenkang injection (SKI) has been widely used to treat renal tubulointerstitial fibrosis in patients with chronic kidney disease in China. However, it is still unknown whether SKI can alleviate DT. We designed a series of experiments to investigate the beneficial effects of SKI in DT and the mechanisms that are responsible for its effect on epithelial-to-mesenchymal transition (EMT) and endoplasmic reticulum (ER) stress-induced apoptosis in DT. Methods: The modified DKD rat models were induced by uni-nephrectomy, streptozotocin intraperitoneal injection, and a high-fat diet. Following the induction of renal injury, these animals received either SKI, rosiglitazone (ROS), or vehicle, for 42 days. For in vitro research, we exposed NRK-52E cells to high glucose (HG) and 4-phenylbutyric acid (4-PBA) with or without SKI or ROS. Changes in parameters related to renal tubular injury and EMT were analyzed in vivo. Changes in the proportion of apoptotic renal tubular cells and ER stress, and the signaling pathways involved in these changes, were analyzed both in vivo and in vitro. Results: SKI and ROS improved the general condition, the renal morphological appearance and the key biochemical parameters, and attenuated renal injury and EMT in the rat model of DKD. In addition, SKI and ROS alleviated apoptosis, inhibited ER stress, and suppressed PERK-eIF2α-ATF4-CHOP signaling pathway activation both in vivo and in vitro. Notably, our data showed that the regulatory in vitro effects of SKI on PERK-eIF2α-ATF4-CHOP signaling were similar to those of 4-PBA, a specific inhibitor of ER stress. Conclusion: This study confirmed that SKI can alleviate DT in a similar manner as ROS, and SKI achieves this effect by inhibiting EMT and ER stress-induced apoptosis. Our findings thereby provide novel information relating to the clinical value of SKI in the treatment of DT.
Collapse
Affiliation(s)
- Wen-Wen Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Nephrology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mei-Zi Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huan Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bu-Hui Liu
- Nephrology Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Can-Can Yuan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Xin Chen
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Fu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Yue Wan
- Graduate School of Social Sciences, Faculty of Social Sciences, Hitotsubashi University, Tokyo, Japan
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
12
|
Abstract
Drug induced kidney injury is one of the leading causes of failure of drug development programs in the clinic. Early prediction of renal toxicity potential of drugs is crucial to the success of drug candidates in the clinic. The dynamic nature of the functioning of the kidney and the presence of drug uptake proteins introduce additional challenges in the prediction of renal injury caused by drugs. Renal injury due to drugs can be caused by a wide variety of mechanisms and can be broadly classified as toxic or obstructive. Several biomarkers are available for in vitro and in vivo detection of renal injury. In vitro static and dynamic (microfluidic) cellular models and preclinical models can provide valuable information regarding the toxicity potential of drugs. Differences in pharmacology and subsequent disconnect in biomarker response, differences in the expression of transporter and enzyme proteins between in vitro to in vivo systems and between preclinical species and humans are some of the limitations of current experimental models. The progress in microfluidic (kidney-on-chip) platforms in combination with the ability of 3-dimensional cell culture can help in addressing some of these issues in the future. Finally, newer in silico and computational techniques like physiologically based pharmacokinetic modeling and machine learning have demonstrated potential in assisting prediction of drug induced kidney injury.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Drug Metabolism and Pharmacokinetics, Millennium Pharmaceuticals, a fully owned subsidiary of Takeda Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
13
|
Guo W, Gao H, Pan W, Yu P, Che G. High glucose induces Nox4 expression and podocyte apoptosis through the Smad3/ezrin/PKA pathway. Biol Open 2021; 10:bio.055012. [PMID: 33046439 PMCID: PMC8181897 DOI: 10.1242/bio.055012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Podocytes are the major target in proteinuric kidney diseases such as diabetic nephropathy. The underlying molecular mechanisms by which high glucose (HG) results in podocyte damage remain unclear. This study investigated the regulatory role of Smad3, ezrin, and protein kinase A (PKA) in NADPH oxidase (Nox4) expression, reactive oxidative species (ROS) production, and apoptosis in HG-treated podocytes. A human podocyte cell line was cultured and differentiated, then treated with 30 mM HG. Apoptosis and intracellular ROS levels were assessed using TUNEL and DCF assays, respectively. Expressions of Nox4, phospho-Smad3Ser423/425, phospho-PKAThr197, and phospho-ezrinThr567 were evaluated using western blotting. ELISA was used to quantify intracellular cAMP concentration and PKA activity. Knockdown assay was used to inhibit the expressions of Smad3, Nox4, and ezrin by lentiviral shRNA. In HG-treated podocytes, the level of phospho-Smad3Ser423/425 and phospho-ezrinThr567 was increased significantly, which was accompanied by the reduction of cAMP and phospho-PKAThr197. HG-induced apoptosis was significantly prevented by the Smad3-inhibitor SIS3 or shRNA-Smad3. In podocytes expressing shRNA-ezrin or shRNA-Nox4, apoptosis was remarkably mitigated following HG treatment. HG-induced upregulation of phospho-ezrinThr567 and downregulation of phospho-PKAThr197 was significantly prevented by SIS3, shRNA-ezrin or shRNA-Smad3. Forskolin, a PKA activator, significantly inhibited HG-mediated upregulation of Nox4 expression, ROS generation, and apoptosis. Additionally, an increase in the ROS level was prohibited in HG-treated podocytes with the knockdown of Nox4, Smad3, or ezrin. Taken together, our findings provided evidence that Smad3-mediated ezrin activation upregulates Nox4 expression and ROS production, by suppressing PKA activity, which may at least in part contribute to HG-induced podocyte apoptosis. Summary: The actin-membrane linker protein ezrin-related signaling plays a critical role in podocyte apoptosis through regulation of Nox4 expression and ROS production.
Collapse
Affiliation(s)
- Wanxu Guo
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China
| | - Hang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Wei Pan
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China
| | - Panapn Yu
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China
| | - Guanghua Che
- Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China
| |
Collapse
|
14
|
Wu H, Wang J, Cao M, Liang J, Wu D, Gu X, Ke K. Effects of homocysteine-induced endoplasmic reticulum protein on endoplasmic reticulum stress, autophagy, and neuronal apoptosis following intracerebral hemorrhage. IBRO Rep 2020; 9:207-217. [PMID: 32984639 PMCID: PMC7494608 DOI: 10.1016/j.ibror.2020.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is defined as bleeding into the brain parenchyma with a high mortality and morbidity rate. Unfortunately, it remains an unresolved medical problem. Therefore, it is necessary to find ways to reduce cellular apoptosis after ICH. Homocysteine-induced endoplasmic reticulum protein (HERP), a 54 kD transmembrane protein, is an early stress response protein encoded by ubiquitin-like domain member 1 (Herpud1) gene. In the present work, our group investigated the role of HERP after ICH and hemin stimulation, HERP expression was examined in mouse and primary cortical neurons after ICH and hemin stimulation by western blot and Immunofluorescent labeling. Using shRNA-HERP plasmid and recombinant adenovirus, we also investigated how HERP affected neuronal apoptosis after ICH and hemin stimulation. In addition, behavioral evaluation was used to ensure our models' success. In vivo and vitro studies, the expression of HERP was increased following ICH and hemin-exposed primary cortical neurons. HERP depletion activated the endoplasmic reticulum (ER) stress pathway and apoptosis in hemin-exposed primary cortical neurons, but inhibited autophagy in hemin-exposed primary cortical neurons. Overexpression of HERP inhibited the ER stress pathway and apoptosis, but activated autophagy in hemin-exposed primary cortical neurons. Consequently, we confirm that HERP plays a protective role in ICH model.
Collapse
Affiliation(s)
- Hui Wu
- Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jinglei Wang
- Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Dan Wu
- Department of Neurology, Tongzhou People's Hospital, Nantong, Jiangsu Province, People's Republic of China
| | - Xingxing Gu
- Jiangsu Key Laboratory of Neuroregeneration, Department of Neuronscience, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
15
|
Jeon JS, Kim E, Bae YU, Yang WM, Lee H, Kim H, Noh H, Han DC, Ryu S, Kwon SH. microRNA in Extracellular Vesicles Released by Damaged Podocytes Promote Apoptosis of Renal Tubular Epithelial Cells. Cells 2020; 9:cells9061409. [PMID: 32517075 PMCID: PMC7349539 DOI: 10.3390/cells9061409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/17/2023] Open
Abstract
Tubular injury and fibrosis are associated with progressive kidney dysfunction in advanced glomerular disease. Glomerulotubular crosstalk is thought to contribute to tubular injury. microRNAs (miRNAs) in extracellular vesicles (EVs) can modulate distant cells. We hypothesized that miRNAs in EVs derived from injured podocytes lead to tubular epithelial cell damage. As proof of this concept, tubular epithelial (HK2) cells were cultured with exosomes from puromycin-treated or healthy human podocytes, and damage was assessed. Sequencing analysis revealed the miRNA repertoire of podocyte EVs. RNA sequencing identified 63 upregulated miRNAs in EVs from puromycin-treated podocytes. Among them, five miRNAs (miR-149, -424, -542, -582, and -874) were selected as candidates for inducing tubular apoptosis according to a literature-based search. To validate the effect of the miRNAs, HK2 cells were treated with miRNA mimics. EVs from injured podocytes induced apoptosis and p38 phosphorylation of HK2 cells. The miRNA-424 and 149 mimics led to apoptosis of HK2 cells. These results show that miRNAs in EVs from injured podocytes lead to damage to tubular epithelial cells, which may contribute to the development of tubular injury in glomerular disease.
Collapse
Affiliation(s)
- Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Eunbit Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungchung nam do 31151, Korea; (E.K.); (Y.-U.B.)
| | - Yun-Ui Bae
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungchung nam do 31151, Korea; (E.K.); (Y.-U.B.)
- Department of Physiology, Keimyung University School of Medicine, Daegu, Kyungsang buk do 42601, Korea
| | - Won Mi Yang
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Dong Cheol Han
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungchung nam do 31151, Korea; (E.K.); (Y.-U.B.)
- Correspondence: (S.R.); (S.H.K.); Tel.: +82-41-530-4839 (S.R.); Tel.: +82-2-710-3274 (S.H.K.); Fax: +82-2-792-5812 (S.H.K.)
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (J.S.J.); (H.L.); (H.K.); (H.N.); (D.C.H.)
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
- Correspondence: (S.R.); (S.H.K.); Tel.: +82-41-530-4839 (S.R.); Tel.: +82-2-710-3274 (S.H.K.); Fax: +82-2-792-5812 (S.H.K.)
| |
Collapse
|
16
|
Role of Klotho in Chronic Calcineurin Inhibitor Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1825018. [PMID: 31772699 PMCID: PMC6854173 DOI: 10.1155/2019/1825018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Calcineurin inhibitors (CNIs) are the most popular immunosuppressants in organ transplantation, but nephrotoxicity is a major concern. The common mechanism underlying chronic CNI nephropathy is oxidative stress, and the process of chronic CNI nephropathy is similar to that of aging. Current studies provide evidence that antiaging Klotho protein plays an important role in protecting against oxidative stress, and its signaling is a target for preventing oxidative stress-induced aging process. In this review, we focus on the association between Klotho and oxidative stress and the protective mechanism of action of Klotho against oxidative stress in chronic CNI nephropathy. In addition, we discuss the delivery strategy for Klotho in CNI-induced nephropathy.
Collapse
|
17
|
Urinary myo-inositol is associated with the clinical outcome in focal segmental glomerulosclerosis. Sci Rep 2019; 9:14707. [PMID: 31605028 PMCID: PMC6789025 DOI: 10.1038/s41598-019-51276-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) have similar initial histological findings; however, their prognoses are distinct. Therefore, it is of great importance to discriminate FSGS from MCD in the early phase of disease and predict clinical prognosis. A discovery set of 184 urine samples (61 healthy control, 80 MCD, and 43 FSGS) and a validation set of 61 urine samples (12 healthy control, 26 MCD, and 23 FSGS) were collected at the time of kidney biopsy. Metabolic profiles were examined using nuclear magnetic resonance spectroscopy. Of 70 urinary metabolites, myo-inositol was significantly higher in FSGS patients than in control patients (discovery set, 2.34-fold, P < 0.001; validation set, 2.35-fold, P = 0.008) and MCD patients (discovery set, 2.48-fold, P = 0.002; validation set, 1.69-fold, P = 0.042). Myo-inositol showed an inverse relationship with the initial estimated glomerular filtration rate (eGFR) and was associated with the plasma level of soluble urokinase-type plasminogen activator receptor in FSGS patients. Myo-inositol treatment ameliorated the decreased expression of ZO-1 and synaptopodin in an in vitro FSGS model, and as myo-inositol increased, myo-inositol oxygenase tissue expression decreased proportionally to eGFR. Furthermore, urinary myo-inositol exhibited an increase in the power to discriminate FSGS patients, and its addition could better predict the response to initial treatment. In conclusion, urinary myo-inositol may be an important indicator in the diagnosis and treatment of FSGS patients.
Collapse
|
18
|
CCR2 knockout ameliorates obesity-induced kidney injury through inhibiting oxidative stress and ER stress. PLoS One 2019; 14:e0222352. [PMID: 31498850 PMCID: PMC6733486 DOI: 10.1371/journal.pone.0222352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
CCL2/CCR2 signaling is believed to play an important role in kidney diseases. Several studies have demonstrated that blocking of CCR2 has a therapeutic effect on kidney diseases. However, the effects of CCR2 knockout on obesity-induced kidney injury remain unclear. We investigated the therapeutic effects and the mechanism of CCL2/CCR2 signaling in obesity-induced kidney injury. We used C57BL/6-CCR2 wild type and C57BL/6-CCR2 knockout mice: Regular diet wild type (RD WT), RD CCR2 knockout (RD KO), High-fat diet WT (HFD WT), HFD CCR2 KO (HFD KO). Body weight of WT mice was significantly increased after HFD. However, the body weight of HFD KO mice was not decreased compared to HFD WT mice. Food intake and calorie showed no significant differences between HFD WT and HFD KO mice. Glucose, insulin, total cholesterol, and triglycerides levels increased in HFD WT mice were decreased in HFD KO mice. Insulin resistance, increased insulin secretion, and lipid accumulation showed in HFD WT mice were improved in HFD KO mice. Increased desmin expression, macrophage infiltration, and TNF-α in HFD mice were reduced in HFD KO mice. HFD-induced albuminuria, glomerular hypertrophy, glomerular basement membrane thickening, and podocyte effacement were restored by CCR2 depletion. HFD-induced elevated expressions of xBP1, Bip, and Nox4 at RNA and protein levels were significantly decreased in HFD KO. Therefore, blockade of CCL2/CCR2 signaling by CCR2 depletion might ameliorate obesity-induced albuminuria through blocking oxidative stress, ER stress, and lipid accumulation.
Collapse
|
19
|
Kwon SH. Extracellular vesicles in renal physiology and clinical applications for renal disease. Korean J Intern Med 2019; 34:470-479. [PMID: 31048657 PMCID: PMC6506725 DOI: 10.3904/kjim.2019.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
Many cells in the nephron release extracellular vesicles (EVs). EVs envelop nucleic acids, proteins, and lipids. The surfaces of EVs express donor cell-specific markers, ligands, and major histocompatibility complex molecules. They are involved in cell-to-cell communication, immune modulation, and the removal of unwanted materials from cells. EVs have been studied as biomarkers of specific diseases and have potential therapeutic applications. Recent research has emphasized the functions of EVs in the kidney. This review provides an overview of recent findings related to the roles of EVs in the nephron, and their utility as biomarkers and therapeutic factors in renal disease.
Collapse
Affiliation(s)
- Soon Hyo Kwon
- Division of Nephrology, Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Correspondence to Soon Hyo Kwon, M.D. Division of Nephrology, Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul 04401, Korea Tel: +82-2-710-3274 Fax: +82-2-792-5812 E-mail:
| |
Collapse
|