1
|
Brdar I, Racetin A, Jeličić I, Vukojević K, Vučković L, Ljutić D, Saraga-Babić M, Filipović N. Expression of Autophagy Markers LC3B, LAMP2A, and GRP78 in the Human Kidney during Embryonic, Early Fetal, and Postnatal Development and Their Significance in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:9152. [PMID: 39273100 PMCID: PMC11394701 DOI: 10.3390/ijms25179152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Autophagy is the primary intracellular degradation system, and it plays an important role in many biological and pathological processes. Studies of autophagy involvement in developmental processes are important for understanding various processes. Among them are fibrosis, degenerative diseases, cancer development, and metastasis formation. Diabetic kidney disease is one of the main causes of chronic kidney disease and end-stage renal failure. The aim of this study was to investigate the immunohistochemical expression patterns of LC3B, LAMP2A, and GRP78 during different developmental stages of early-developing human kidneys and in samples from patients with type II diabetes mellitus. During the 7/8th DW, moderate expression of LC3B and LAMP2A and strong expression of GRP78 were found in the mesonephric glomeruli and tubules. In the 9/10th DW, the expression of LC3B and LAMP2A was even more pronounced in the mesonephric tubules. LC3B, LAMP2A, and GRP78 immunoreactivity was also found in the paramesonephric and mesonephric ducts and was stronger in the 9/10th DW compared with the 7/8th DW. In addition, the expression of LC3B, LAMP2A, and GRP78 also appeared in the mesenchyme surrounding the paramesonephric duct in the 9/10th DW. In the 15/16th DW, the expression of LC3B in the glomeruli was weak, that of LAMP2A was moderate, and that of GRP78 was strong. In the tubuli, the expression of LC3B was moderate, while the expression of LAMP2A and GRP78 was strong. The strongest expression of LC3B, LAMP2A, and GRP78 was observed in the renal medullary structures, including developing blood vessels. In postnatal human kidneys, the most extensive LC3B, LAMP2A, and GRP78 expression in the cortex was found in the epithelium of the proximal convoluted tubules, with weak to moderate expression in the glomeruli. The medullary expression of LC3B was weak, but the expression of LAMP2A and GRP78 was the strongest in the medullary tubular structures. Significantly lower expression of LC3B was found in the glomeruli of the diabetic patients in comparison with the nondiabetic patients, but there was no difference in the expression of LC3B in the tubule-interstitial compartment. The expression of LAMP2A was significantly higher in the tubule-interstitial compartments of the diabetic patients in comparison with the nondiabetic patients, while its expression did not differ in the glomeruli. Extensive expression of GRP78 was found in the glomeruli and the tubule-interstitial compartments, but there was no difference in the expression between the two groups of patients. These data give us new information about the expression of LC3B, LAMP2A, and GRP78 during embryonic, fetal, and early postnatal development. The spatiotemporal expression of LC3B, LAMP2A, and GRP78 indicates the important role of autophagy during the early stages of renal development. In addition, our data suggest a disturbance in autophagy processes in the glomeruli and tubuli of diabetic kidneys as an important factor in the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Ivan Brdar
- Emergency Department, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Ivo Jeličić
- Internal Medicine Department, Nephrology and Haemodialysis Division, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
- Department of Anatomy, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ljiljana Vučković
- Clinic for Pathology and Citology, Clinical Center of Montenegro, 81101 Podgorica, Montenegro
- Department of Histology and Embryology, Medical Faculty, University of Montenegro, 81101 Podgorica, Montenegro
| | - Dragan Ljutić
- Internal Medicine Department, Nephrology and Haemodialysis Division, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
2
|
Li Z, Tian Z. Restoration of autophagy activity by dipsacoside B alleviates exhaustive exercise-induced kidney injury via the AMPK/mTOR pathway. Nat Prod Res 2024:1-7. [PMID: 38293762 DOI: 10.1080/14786419.2024.2308002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Exhaustive exercise (EE) induces kidney injury, but its concrete mechanism has not been fully elucidated. Hepatoprotective effects of dipsacoside B (DB) have been found previously, involving in autophagy induction. However, whether DB exerts renal protective effect and its potential mechanism are still unknown. The present study aimed to investigate the benefit of DB in EE-induced kidney injury and decipher its underlying mechanism. Here, we found that DB ameliorated EE-induced renal dysfunction and renal histopathological injury in rats. DB possessed anti-inflammatory, anti-oxidative, and anti-apoptotic functions in kidneys of exercise-induced exhausted rats. Besides, DB improved autophagy function in kidneys of EE rats. Mechanically, activation of the adenylate-activating protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was implicated in the kidney injury-relieving effects and autophagy restoration induced by DB. Collectively, these findings provide reference for the clinical application of DB in preventing and managing EE-induced kidney injury.
Collapse
Affiliation(s)
- Zhenyu Li
- Sias University, Xinzheng, P.R. China
- The 521 Laboratory of Sports Physiology and Biochemistry, Department of Sport Science, College of Natural Science, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Zhuang Tian
- The 521 Laboratory of Sports Physiology and Biochemistry, Department of Sport Science, College of Natural Science, Jeonbuk National University, Jeonju-si, Republic of Korea
- College of Physical Education, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|