1
|
Akbar A, Malekian F, Baghban N, Kodam SP, Ullah M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022; 11:186. [PMID: 35053301 PMCID: PMC8774122 DOI: 10.3390/cells11020186] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The use of extracellular vesicles (EV) in nano drug delivery has been demonstrated in many previous studies. In this study, we discuss the sources of extracellular vesicles, including plant, salivary and urinary sources which are easily available but less sought after compared with blood and tissue. Extensive research in the past decade has established that the breadth of EV applications is wide. However, the efforts on standardizing the isolation and purification methods have not brought us to a point that can match the potential of extracellular vesicles for clinical use. The standardization can open doors for many researchers and clinicians alike to experiment with the proposed clinical uses with lesser concerns regarding untraceable side effects. It can make it easier to identify the mechanism of therapeutic benefits and to track the mechanism of any unforeseen effects observed.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Neda Baghban
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Yousafzai NA, Jin H, Ullah M, Wang X. Recent advances of SIRT1 and implications in chemotherapeutics resistance in cancer. Am J Cancer Res 2021; 11:5233-5248. [PMID: 34873458 PMCID: PMC8640807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023] Open
Abstract
Cancer is a big group of diseases and one of the leading causes of mortality worldwide. Despite enormous studies and efforts are being carried out in understanding the cancer and developing drugs against tumorigenesis, drug resistance is the main obstacle in cancer treatments. Chemotherapeutic treatment is an important part of cancer treatment and drug resistance is getting gradually multidimensional with the advancement of studies in cancer. The underlying mechanisms of drug resistance are largely unknown. Sirtuin1 (SIRT1) is a type of the Class III histone deacetylase family that is distinctively dependent on nicotinamide adenine dinucleotide (NAD+) for catalysis reaction. SIRT1 is a molecule which upon upregulation directly influences tumor progression, metastasis, tumor cell apoptosis, autophagy, DNA repair, as well as other interlinked tumorigenesis mechanism. It is involved in drug metabolism, apoptosis, DNA damage, DNA repair, and autophagy, which are key hallmarks of drug resistance and may contribute to multidrug resistance. Thus, understanding the role of SIRT1 in drug resistance could be important. This study focuses on the SIRT1 based mechanisms that might be a potential underlying approach in the development of cancer drug resistance and could be a potential target for drug development.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou 310020, Zhejiang, China
- Department of Medical and Health Sciences, University of Poonch RawalakotAJK 12350, Pakistan
| | - Hongchuan Jin
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford UniversityPalo Alto, CA 94304, United States
| | - Xian Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou 310020, Zhejiang, China
| |
Collapse
|
3
|
Ullah A, Mabood N, Maqbool M, Khan L, Ullah M. Cytidine deamination-induced perpetual immunity to SAR-CoV-2 infection is a potential new therapeutic target. Int J Med Sci 2021; 18:3788-3793. [PMID: 34790054 PMCID: PMC8579299 DOI: 10.7150/ijms.61779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
As the world is racing to develop perpetual immunity to the SARS-CoV-2 virus. The emergence of new viral strains, together with vaccination and reinfections, are all contributing to a long-term immunity against the deadly virus that has taken over the world since its introduction to humans in late December 2019. The discovery that more than 95 percent of people who recovered from COVID-19 had long-lasting immunity and that asymptomatic people have a different immune response to SARS-CoV-2 than symptomatic people has shifted attention to how our immune system initiates such diverse responses. These findings have provided reason to believe that SARS-CoV-2 days are numbered. Hundreds of research papers have been published on the causes of long-lasting immune responses and variations in the numbers of different immune cell types in COVID 19 survivors, but the main reason of these differences has still not been adequately identified. In this article, we focus on the activation-induced cytidine deaminase (AID), which initiates molecular processes that allow our immune system to generate antibodies against SARS-CoV-2. To establish lasting immunity to SARS-CoV-2, we suggest that AID could be the key to unlocking it.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Neelam Mabood
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luqman Khan
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Kodam SP, Ullah M. Diagnostic and Therapeutic Potential of Extracellular Vesicles. Technol Cancer Res Treat 2021; 20:15330338211041203. [PMID: 34632862 PMCID: PMC8504225 DOI: 10.1177/15330338211041203] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally phospholipid enclosed nanovesicles released by many cells in the body. They are stable in circulation, have low immunogenicity, and act as carriers for functionally active biological molecules. They interact with target organs and bind to the receptors. Their target specificity is important to use EVs as noninvasive diagnostic and prognostic tools. EVs play a vital role in normal physiology and cellular communication. They are known to protect their cargo from degradation, which makes them important drug carriers for targeted drug delivery. Using EVs with markers and tracking their path in systemic circulation can be revolutionary in using them as diagnostic tools. We will discuss the scope of this in this paper. Although there are limitations in EVs isolation and storage, their high biocompatibility will fuel more innovations to overcome these challenges.
Collapse
Affiliation(s)
- Sai Priyanka Kodam
- Institute for Immunity and Transplantation, 158423Stem Cell Biology and Regenerative Medicine, School of Medicine, 6429Stanford University, Palo Alto, California, USA.,School of Medicine, 6429Stanford University, Palo Alto, California, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, 158423Stem Cell Biology and Regenerative Medicine, School of Medicine, 6429Stanford University, Palo Alto, California, USA.,School of Medicine, 6429Stanford University, Palo Alto, California, USA
| |
Collapse
|
5
|
Ullah A, Mabood N, Maqbool M, Khan L, Khan M, Ullah M. SAR-CoV-2 infection, emerging new variants and the role of activation induced cytidine deaminase (AID) in lasting immunity. Saudi Pharm J 2021; 29:1181-1184. [PMID: 34566457 PMCID: PMC8452370 DOI: 10.1016/j.jsps.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
As the world faces a fourth COVID-19 spike, scientists are learning a lot more about the new SARS-CoV-2 strains that were previously unknown. Currently, the Delta versions of SARS-CoV-2 have become the prevalent strains in much of the world since it first appeared in India in late 2020. Researchers believe they have discovered why Delta has been so successful: those infected with it create significantly more virus than those infected with the original strain of SARS-CoV-2, making it extremely contagious. This has redirected the focus to how our immune system defends us from these various pathogens and initiates such varied responses. Hundreds of research papers have been published on the origins of long-lasting immune responses and disparities in the numbers of different immune cell types in COVID 19 survivors, but the primary architect of these discrepancies has yet to be discovered. In this essay, we will concentrate on the primary architect protein, activation induced cytidine deaminase (AID), which triggers molecular processes that allow our immune system to produce powerful antibodies and SARS-CoV-2 specific B cells, allowing us to outwit the virus. We believe that if we ever achieve permanent immunity to SARS-CoV-2 infection, AID will be the key to releasing it.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Neelam Mabood
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luqman Khan
- Cardiovascular Vascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maria Khan
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Annealed ZnO/Al 2O 3 Core-Shell Nanowire as a Platform to Capture RNA in Blood Plasma. NANOMATERIALS 2021; 11:nano11071768. [PMID: 34361154 PMCID: PMC8308134 DOI: 10.3390/nano11071768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
RNA analytical platforms gained extensive attention recently for RNA-based molecular analysis. However, the major challenge for analyzing RNAs is their low concentration in blood plasma samples, hindering the use of RNAs for diagnostics. Platforms that can enrich RNAs are essential to enhance molecular detection. Here, we developed the annealed ZnO/Al2O3 core-shell nanowire device as a platform to capture RNAs. We showed that the annealed ZnO/Al2O3 core-shell nanowire could capture RNAs with high efficiency compared to that of other circulating nucleic acids, including genomic DNA (gDNA) and cell-free DNA (cfDNA). Moreover, the nanowire was considered to be biocompatible with blood plasma samples due to the crystalline structure of the Al2O3 shell which serves as a protective layer to prevent nanowire degradation. Our developed device has the potential to be a platform for RNA-based extraction and detection.
Collapse
|
7
|
Ullah M, Qian NPM, Yannarelli G, Akbar A. Heat shock protein 20 promotes sirtuin 1-dependent cell proliferation in induced pluripotent stem cells. World J Stem Cells 2021; 13:659-669. [PMID: 34249234 PMCID: PMC8246253 DOI: 10.4252/wjsc.v13.i6.659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) are molecular chaperones that protect cells against cellular stresses or injury. However, it has been increasingly recognized that they also play crucial roles in regulating fundamental cellular processes. HSP20 has been implicated in cell proliferation, but conflicting studies have shown that it can either promote or suppress proliferation. The underlying mechanisms by which HSP20 regulates cell proliferation and pluripotency remain unexplored. While the effect of HSP20 on cell proliferation has been recognized, its role in inducing pluripotency in human-induced pluripotent stem cells (iPSCs) has not been addressed.
AIM To evaluate the efficacy of HSP20 overexpression in human iPSCs and evaluate the ability to promote cell proliferation. The purpose of this study was to investigate whether overexpression of HSP20 in iPSCs can increase pluripotency and regeneration.
METHODS We used iPSCs, which retain their potential for cell proliferation. HSP20 overexpression effectively enhanced cell proliferation and pluripotency. Overexpression of HSP20 in iPSCs was characterized by immunocytochemistry staining and real-time polymerase chain reaction. We also used cell culture, cell counting, western blotting, and flow cytometry analyses to validate HSP20 overexpression and its mechanism.
RESULTS This study demonstrated that overexpression of HSP20 can increase the pluripotency in iPSCs. Furthermore, by overexpressing HSP20 in iPSCs, we showed that HSP20 upregulated proliferation markers, induced pluripotent genes, and drove cell proliferation in a sirtuin 1 (SIRT1)-dependent manner. These data have practical applications in the field of stem cell-based therapies where the mass expansion of cells is needed to generate large quantities of stem cell-derived cells for transplantation purposes.
CONCLUSION We found that the overexpression of HSP20 enhanced the proliferation of iPSCs in a SIRT1-dependent manner. Herein, we established the distinct crosstalk between HSP20 and SIRT1 in regulating cell proliferation and pluripotency. Our study provides novel insights into the mechanisms controlling cell proliferation that can potentially be exploited to improve the expansion and pluripotency of human iPSCs for cell transplantation therapies. These results suggest that iPSCs overexpressing HSP20 exert regenerative and proliferative effects and may have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94304, United States
| | - Nicole Pek Min Qian
- Immunology and School of Medicine, Stanford University, Stanford, CA 94304, United States
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires 1078, Argentina
| | - Asma Akbar
- Institute for Molecular Medicine, School of Medicine, Stanford University, Stanford, CA 94304, United States
| |
Collapse
|
8
|
Akbar A, Pillalamarri N, Jonnakuti S, Ullah M. Artificial intelligence and guidance of medicine in the bubble. Cell Biosci 2021; 11:108. [PMID: 34108005 PMCID: PMC8191053 DOI: 10.1186/s13578-021-00623-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Microbubbles are nanosized gas-filled bubbles. They are used in clinical diagnostics, in medical imaging, as contrast agents in ultrasound imaging, and as transporters for targeted drug delivery. They can also be used to treat thrombosis, neoplastic diseases, open arteries and vascular plaques and for localized transport of chemotherapies in cancer patients. Microbubbles can be filled with any type of therapeutics, cure agents, growth factors, extracellular vesicles, exosomes, miRNAs, and drugs. Microbubbles protect their cargo from immune attack because of their specialized encapsulated shell composed of lipid and protein. Filled with curative medicine, they could effectively circulate through the whole body safely and efficiently to reach the target area. The advanced bubble-based drug-delivery system, integrated with artificial intelligence for guidance, holds great promise for the targeted delivery of drugs and medicines.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA.
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Ullah M, Qian NPM, Yannarelli G. Advances in innovative exosome-technology for real time monitoring of viable drugs in clinical translation, prognosis and treatment response. Oncotarget 2021; 12:1029-1031. [PMID: 34084276 PMCID: PMC8169069 DOI: 10.18632/oncotarget.27927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/07/2023] Open
|
10
|
Pillalamarri N, Abdullah, Ren G, Khan L, Ullah A, Jonnakuti S, Ullah M. Exploring the utility of extracellular vesicles in ameliorating viral infection-associated inflammation, cytokine storm and tissue damage. Transl Oncol 2021; 14:101095. [PMID: 33887552 PMCID: PMC8053440 DOI: 10.1016/j.tranon.2021.101095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as potential mediators of intercellular communication. EVs are nano-sized, lipid membrane-bound vesicles that contains biological information in the form of proteins, metabolites and/or nucleic acids. EVs are key regulators of tissue repair mechanisms, such as in the context of lung injuries. Recent studies suggest that EVs have the ability to repair COVID19-associated acute lung damage. EVs hold great promise for therapeutic treatments, particularly in treating a potentially fatal autoimmune response and attenuate inflammation. They are known to boost lung immunity and are involved in the pathogenesis of various lung diseases, including viral infection. EV-based immunization technology has been proven to elicit robust immune responses in many models of infectious disease, including COVID-19. The field of EV research has tremendous potential in advancing our understanding about viral infection pathogenesis, and can be translated into anti-viral therapeutic strategies.
Collapse
Affiliation(s)
- Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Abdullah
- Molecular Medicine Department of Medicine, Stanford University, CA, United States
| | - Gang Ren
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Luqman Khan
- School of Medicine, University of California, San Francisco, CA 94158, United States
| | - Asad Ullah
- School of Medicine, University of California, San Francisco, CA 94158, United States
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States; Molecular Medicine Department of Medicine, Stanford University, CA, United States.
| |
Collapse
|
11
|
Ullah M, Kodam SP, Mu Q, Akbar A. Microbubbles versus Extracellular Vesicles as Therapeutic Cargo for Targeting Drug Delivery. ACS NANO 2021; 15:3612-3620. [PMID: 33666429 DOI: 10.1021/acsnano.0c10689] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) and microbubbles are nanoparticles in drug-delivery systems that are both considered important for clinical translation. Current research has found that both microbubbles and EVs have the potential to be utilized as drug-delivery agents for therapeutic targets in various diseases. In combination with EVs, microbubbles are capable of delivering chemotherapeutic drugs to tumor sites and neighboring sites of damaged tissues. However, there are no standards to evaluate or to compare the benefits of EVs (natural carrier) versus microbubbles (synthetic carrier) as drug carriers. Both drug carriers are being investigated for release patterns and for pharmacokinetics; however, few researchers have focused on their targeted delivery or efficacy. In this Perspective, we compare EVs and microbubbles for a better understanding of their utility in terms of delivering drugs to their site of action and future clinical translation.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Sai Priyanka Kodam
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Qian Mu
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
12
|
Ullah M, Akbar A, Yannarelli G. Applications of artificial intelligence in, early detection of cancer, clinical diagnosis and personalized medicine. Artif Intell Cancer 2020; 1:39-44. [DOI: 10.35713/aic.v1.i2.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) refers to the simulation of human intelligence in machines programmed to convert raw input data into decision-making actions, like humans. AI programs are designed to make decisions, often using deep learning and computer-guided programs that analyze and process raw data into clinical decision making for effective treatment. New techniques for predicting cancer at an early stage are needed as conventional methods have poor accuracy and are not applicable to personalized medicine. AI has the potential to use smart, intelligent computer systems for image interpretation and early diagnosis of cancer. AI has been changing almost all the areas of the medical field by integrating with new emerging technologies. AI has revolutionized the entire health care system through innovative digital diagnostics with greater precision and accuracy. AI is capable of detecting cancer at an early stage with accurate diagnosis and improved survival outcomes. AI is an innovative technology of the future that can be used for early prediction, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity, Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
- Molecular Medicine, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Asma Akbar
- Institute for Immunity, Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
- Molecular Medicine, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Universidad Favaloro-CONICET, Buenos Aires 1078, Argentina
| |
Collapse
|