1
|
Green Copolymers and Nanocomposites from Myrcene and Limonene Using Algerian Nano-Clay as Nano-Reinforcing Filler. Polymers (Basel) 2022; 14:polym14235271. [PMID: 36501664 PMCID: PMC9739573 DOI: 10.3390/polym14235271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
In this work, we report a new facile method for the preparation of myrcene-limonene copolymers and nanocomposites using a Lewis acid as a catalyst (AlCl3) and organo-modified clay as a nano-reinforcing filler. The copolymer (myr-co-lim) was prepared by cationic copolymerization using AlCl3 as a catalyst. The structure of the obtained copolymer is studied and confirmed by Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, and Differential Scanning Calorimetry. By improving the dispersion of the matrix polymer in sheets of the organoclay, Maghnite-CTA+ (Mag-CTA+), an Algerian natural organophilic clay, was used to preparenanocomposites of linear copolymer (myr-co-lim). In order to identify and assess their structural, morphological, and thermal properties, the effect of the organoclay, used in varyingamounts (1, 4, 7, and 10% by weight), and the preparation process were investigated. The Mag-CTA+ is an organophylic montmorillonite silicate clay prepared through a direct exchange process in which they were used as green nano-reinforcing filler. The X-ray diffraction of the resulting nanocomposites revealed a considerable alteration in the interlayer spacing of Mag-CTA+. As a result, interlayer expansion and myr-co-lim exfoliation between layers of Mag-CTA+ were observed. Thermogravimetric analysis provided information on the synthesized nanocomposites' thermal properties. Fourier transform infrared spectroscopy and scanning electronic microscopy, respectively, were used to determine the structure and morphology of the produced nanocomposites (myr-co-lim/Mag). The intercalation of myr-co-lim in the Mag-CTA+ sheets has been supported by the results, and the optimum amount of organoclay needed to create a nanocomposite with high thermal stability is 10% by weight. Finally, a new method for the preparation of copolymer and nanocomposites from myrcene and limonene in a short reaction time was developed.
Collapse
|
2
|
Derdar H, Mitchell GR, Chaibedraa S, Mahendra VS, Cherifi Z, Bachari K, Chebout R, Touahra F, Meghabar R, Belbachir M. Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene and Organomodified-Clay Using Ultrasonic Assisted Method. Polymers (Basel) 2022; 14:polym14142820. [PMID: 35890596 PMCID: PMC9316819 DOI: 10.3390/polym14142820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
In the present work, we report a simple synthesis method for preparation of copolymers and nanocomposites from limonene and styrene using clay as a catalyst. The copolymerization reaction is carried out by using a proton exchanged clay as a catalyst called Mag-H+. The effect of temperature, reaction time and amount of catalyst were studied, and the obtained copolymer structure (lim-co-sty) is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR) and differential scanning calorimetry (DSC). The molecular weight of the obtained copolymer is determined by gel permeation chromatography (GPC) and is about 4500 g·mol−1. The (lim-co-sty/Mag 1%, 3%, 7% and 10% by weight of clay) nanocomposites were prepared through polymer/clay mixture in solution method using ultrasonic irradiation, in the presence of Mag-CTA+ as green nano-reinforcing filler. The Mag-CTA+ is organophilic silicate clay prepared through a direct exchange process, using cetyltrimethylammonuim bromide (CTAB). The prepared lim-co-sty/Mag nanocomposites have been extensively characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM). TEM analysis confirms the results obtained by XRD and clearly show that the obtained nanocomposites are partially exfoliated for the lower amount of clay (1% and 3% wt) and intercalated for higher amounts of clay (7% and 10% wt). Moreover, thermogravimetric analysis (TGA) indicated an enhancement of thermal stability of nanocomposites compared with the pure copolymer.
Collapse
Affiliation(s)
- Hodhaifa Derdar
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| | - Geoffey Robert Mitchell
- Centre for Rapid and Sustainable Product Development, Institute Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal
- Correspondence: ; Tel.: +351-244-569-441 or +351-962-426-925 or +44-7768-978014; Fax: +351-244-569-444
| | - Sarra Chaibedraa
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| | | | - Zakaria Cherifi
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
| | - Redouane Chebout
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
| | - Fouzia Touahra
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
| | - Rachid Meghabar
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| | - Mohammed Belbachir
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| |
Collapse
|
3
|
Fatima El Zohra Aris, Hachemaouia A, Yahiaoui A, Dehbi A. Synthesis, Characterization, and Microbial Degradation Behavior of Hydrogel Based on Poly(ε-caprolactone) and Methacrylic Anhydride. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s156009042270018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Zinelabidine Otmane Elabed, Kherroub DE, Derdar H, Belbachir M. Novel Cationic Polymerization of β-Myrcene Using a Proton Exchanged Clay (Maghnite-H+). POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|