1
|
Chaplin AV, Pikina AP, Shcherbakova VA, Sokolova SR, Podoprigora IV, Das MS, Koshkin FA, Ilyina GA, Vasiliadis IA, Efimov BA. Parabacteroides absconsus sp. nov., isolated from feces of a child with atopic dermatitis. Arch Microbiol 2025; 207:25. [PMID: 39757252 DOI: 10.1007/s00203-024-04221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
An obligate anaerobic, Gram-negative rod-shaped bacterial strain designated AD58T was isolated from the feces of a 3-year-old boy with atopic dermatitis. The closest species is Parabacteroides fecalis with 96.98% 16S rRNA gene identity. The average nucleotide identity value between AD58T and P. fecalis AGMB00274T is 85.0-85.4%. The circular genome sequence is 3.77 Mbp long with 43.5 mol% G + C content. The strain AD58T grows at 32-42 °C, its pH range for growth is 6.0-7.5. No growth is observed in the presence of 1% or higher NaCl concentrations. The major fatty acids are anteiso-C15: 0, iso-C15: 0, and summed feature 11 (iso-C17: 0 3-OH and/or C18: 2 DMA), and the predominant respiratory quinone is MK-9. Conditioned media from AD58T increased expression of IL-8 but decreased expression of TLR-4 in HT29 cells. Based on the described properties, we propose AD58T as the type strain of Parabacteroides absconsus sp. nov. (= VKM B-3630T = JCM 35468T).
Collapse
Affiliation(s)
- Andrei V Chaplin
- Pirogov Russian National Research Medical University, Moscow, Russia.
| | - Alla P Pikina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victoria A Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research, Russian Academy of Sciences", Pushchino, Russia
| | - Sofia R Sokolova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Milana S Das
- Peoples' Friendship, University of Russia, Moscow, Russia
| | | | - Galit A Ilyina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Boris A Efimov
- Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
2
|
Marangelo C, Vernocchi P, Del Chierico F, Scanu M, Marsiglia R, Petrolo E, Fucà E, Guerrera S, Valeri G, Vicari S, Putignani L. Stratification of Gut Microbiota Profiling Based on Autism Neuropsychological Assessments. Microorganisms 2024; 12:2041. [PMID: 39458350 PMCID: PMC11510388 DOI: 10.3390/microorganisms12102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Investigations of gut microbiota (GM) play an important role in deciphering disease severity and symptoms. Overall, we stratified 70 ASD patients by neuropsychological assessment, based on Calibrated Severity Scores (CSSs) of the Autism Diagnostic Observation Schedule-Second edition (ADOS-2), Child Behavior Checklist (CBCL) and intelligent quotient/developmental quotient (IQ/DQ) parameters. Hence, metataxonomy and PICRUSt-based KEGG predictions of fecal GM were assessed for each clinical subset. Here, 60% of ASD patients showed mild to moderate autism, while the remaining 40% showed severe symptoms; 23% showed no clinical symptoms, 21% had a risk of behavior problems and 56% had clinical symptoms based on the CBCL, which assesses internalizing problems; further, 52% had no clinical symptoms, 21% showed risk, and 26% had clinical symptoms classified by CBCL externalizing problems. Considering the total CBCL index, 34% showed no clinical symptoms, 13% showed risk, and 52% had clinical symptoms. Here, 70% of ASD patients showed cognitive impairment/developmental delay (CI/DD). The GM of ASDs with severe autism was characterized by an increase in Veillonella, a decrease in Monoglobus pectinilyticus and a higher microbial dysbiosis index (MDI) when compared to mild-moderate ASDs. Patients at risk for behavior problems and showing clinical symptoms were characterized by a GM with an increase of Clostridium, Eggerthella, Blautia, Intestinibacter, Coprococcus, Ruminococcus, Onthenecus and Bariatricus, respectively. Peptidoglycan biosynthesis and biofilm formation KEGGs characterized patients with clinical symptoms, while potential microbiota-activated PPAR-γ-signaling was seen in CI/DD patients. This evidence derived from GM profiling may be used to further improve ASD understanding, leasing to a better comprehension of the neurological phenotype.
Collapse
Affiliation(s)
- Chiara Marangelo
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Pamela Vernocchi
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Federica Del Chierico
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Matteo Scanu
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Riccardo Marsiglia
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Emanuela Petrolo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Silvia Guerrera
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Giovanni Valeri
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
- Life Sciences and Public Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
3
|
Irina P, Alena V, Arsene MMJ, Milana D, Alla P, Lyudmila K, Boris E. Comparison of Vaginal microbiota in HPV-negative and HPV-positive pregnant women using a culture-based approach. Diagn Microbiol Infect Dis 2024; 110:116419. [PMID: 39116654 DOI: 10.1016/j.diagmicrobio.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
The purpose of this study was to conduct a comparative analysis of the composition of the dominant groups of vaginal microorganisms in healthy pregnant women and pregnant women infected with HPV using a microbiological culture-based method. The MALDI TOF MS method and 16S rRNA gene fragment sequencing were used to identify microorganisms isolated from healthy pregnant women (n=32) and pregnant women infected with HPV (n=24). It was found that vaginal secretion samples from both groups contained bacteria of 4 phyla: Bacillota, Actinomycetota, Pseudomonadota, Bacteroidota, and Ascomycota fungi. The most common microbial community in healthy pregnant women being CST I (p=0.0007), and CST V in pregnant women infected with HPV (p=0.0001). At the genus level, a total of 25 taxa were found in all samples, with Lactobacillus being the dominant genus overall. Escherichia (p<0.0001) and Prevotella (p=0.0001) concentrations were higher in HPV infected patients. When calculating the Pearson correlation coefficient for the phyla, it was found that Bacillota correlated negatively with HPV genotypes 16 and 51 (p≤0.05), but positively with HPV genotype 59 (p≤0.05), just like Actinomycetota (p≤0.05). Bacteroidota correlated positively with HPV genotype 56 (0.001
Collapse
Affiliation(s)
- Podoprigora Irina
- Department of Microbiology named after V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia.
| | - Vasina Alena
- Mytishchi Regional Clinical Hospital, Mytishchi, Russia
| | - Mbarga Manga Joseph Arsene
- Department of Microbiology named after V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia.
| | - Das Milana
- Department of Microbiology named after V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Pikina Alla
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Russia
| | - Kafarskaya Lyudmila
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Russia
| | - Efimov Boris
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Russia
| |
Collapse
|
4
|
Bai L, Paek J, Shin Y, Kim H, Kim SH, Shin JH, Kook JK, Chang YH. Description of Fusibacillus kribbianus gen. nov., sp. nov., a fusiform anaerobe isolated from pig feces. Anaerobe 2023; 84:102792. [PMID: 37925064 DOI: 10.1016/j.anaerobe.2023.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE The family Lachnospiraceae is affiliated with the order Clostridiales and was originally contained within Clostridial cluster XIVa. The members of Lachnospiraceae inhabiting the gut comprise the chemoorganotrophic genera, generating sundry short-chain fatty acids to supply energy to the host, and are considered to be related to obesity and gut health. METHODS The polyphasic taxonomic approach was used to characterize the isolate YH-rum2234T. A detailed metabolic analysis was conducted to compare the novel isolate with related strains within the family Lachnospiraceae. RESULTS A fusiform, obligately anaerobic, Gram-stain-negative bacterium, YH-rum2234T, was isolated from pig feces. Analysis of the 16S rRNA gene sequence revealed that the similarities between the isolate and the familiarly interrelated strain Lientehia hominis KCTC 25345T was 94.3%. The average nucleotide identities and genome-to-genome distances of YH-rum2234T and its closely related strains were below 85.5% and 32.5%, respectively. The G + C content of the genomic DNA was 49.2 mol%. The main fatty acids were C16:0, C14:0, and C14:0 DMA. The major polar lipids were aminophospholipids. The cell wall did not contain the peptidoglycan meso-diaminopimelic acid. CONCLUSION Given the chemotaxonomic, phenotypic, and phylogenetic properties, YH-rum2234T (=KCTC 25710T = DSMZ 116041T) represents a new genus and species in the family Lachnospiraceae. Fusibacillus kribbianus gen. nov., sp. nov. is the proposed name.
Collapse
Affiliation(s)
- Lu Bai
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, 305-500, Republic of Korea
| | - Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, 614-735, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Hominibacterium faecale gen. nov., sp. nov., an anaerobic l-arginine-degrading bacterium isolated from human feces. Arch Microbiol 2023; 205:33. [DOI: 10.1007/s00203-022-03365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
|
6
|
Chaplin AV, Shcherbakova VA, Pikina AP, Sokolova SR, Korzhanova M, Belova VA, Korostin DO, Rebrikov DV, Kardonsky DA, Urban AS, Zakharzhevskaya NB, Suzina NE, Podoprigora IV, Das MS, Kholopova DO, Efimov BA. Diplocloster agilis gen. nov., sp. nov. and Diplocloster modestus sp. nov., two novel anaerobic fermentative members of Lachnospiraceae isolated from human faeces. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Three novel strains of Gram-stain-negative, obligately anaerobic, spore-forming straight or slightly curved rods with pointed ends occurring singly or in pairs were isolated from the faeces of healthy human children. The strains were characterized by mesophilic fermentative metabolism and production of acetate, ethanol and H2 as the end metabolic products. Strains ASD3451 and ASD5720T were motile, fermented lactose and raffinose, and weakly fermented maltose. Strain ASD4241T was non-motile and did not ferment the carbohydrates listed above but fermented starch. Strains ASD3451 and ASD5720T shared average nucleotide identity higher than 98.5 % with each other, while ASD4241T had only 88.5-89 % identity to them. Based on phylogenetic and chemotaxonomic analyses, we propose Diplocloster agilis gen. nov., sp. nov. (ASD5720T=JCM 34353T=VKM B-3497T) and Diplocloster modestus sp. nov. (ASD4241T=JCM 34351T=VKM B-3498T) within the family
Lachnospiraceae
.
Collapse
Affiliation(s)
- Andrei V. Chaplin
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Viktoria A. Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research, Russian Academy of Sciences”, Pushchino, Russia
| | - Alla P. Pikina
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sofia R. Sokolova
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Margarita Korzhanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vera A. Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy O. Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Denis V. Rebrikov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry A. Kardonsky
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Moscow, Russia
| | - Anatoly S. Urban
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Moscow, Russia
| | - Natalia B. Zakharzhevskaya
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Moscow, Russia
| | - Natalia E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research, Russian Academy of Sciences”, Pushchino, Russia
| | - Irina V. Podoprigora
- Department of Microbiology and Virology, Peoples' Friendship University of Russia, Moscow, Russia
| | - Milana S. Das
- Department of Microbiology and Virology, Peoples' Friendship University of Russia, Moscow, Russia
| | - Daria O. Kholopova
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris A. Efimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|