1
|
Srivastava A, Verma D. Comparative bacteriome and antibiotic resistome analysis of water and sediment of the Ganga River of India. World J Microbiol Biotechnol 2023; 39:294. [PMID: 37656255 DOI: 10.1007/s11274-023-03730-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
A comparative analysis between water and sediment can provide better information to understand the dynamics of the inhabitant microbiome and their respective antibiotic resistance genes of a river. Therefore, the present investigation was carried to explore the limited information available on bacterial microbiome and their predictive antibiotic resistance genes (ARGs) from water and sediment of the Ganga River. The study utilized the NGS-based sequences previously submitted under the accession number (PRJNA847424 and PRJNA892876). Overall analysis revealed that twenty phyla and fifty-four genera were shared between the water and sediment of the Ganga River. Of them, nine phyla and nineteen genera were observed as significantly different (p-value < 0.05). Where the majority of the genera were associated with the sediment samples over the water that identify the sediment samples as more diverse for species richness. Similarly, seventy-six ARGs were shared between water and sediment samples. Of the ten abundant antibiotic resistance pathways, seven were relatively abundant in sediment samples as compared to the water. Vancomycin resistance genes were significantly more abundant among sediment samples, whereas β-lactam resistance genes were equally distributed in water and sediment samples. The network analysis further revealed that five genera (Flavobacterium, Pseudomonas, Acinetobacter, Candidatus_divison CL5003, and Candidatus_division SWB02) showed a significantly positive correlation with six antibiotic resistance pathways (β-lactam, vancomycin, multidrug resistance, tetracycline, aminoglycoside, and macrolide resistance pathways). The study comes out with several findings where sediment may be considered as a more atrocious habitat for evolving the resistance mechanisms against threatful antibiotics over the water samples of the Ganga River.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environemntal Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environemntal Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
2
|
Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Prevalence of different virulence factors and their association with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol 2023; 23:161. [PMID: 37270502 DOI: 10.1186/s12866-023-02897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Emergence of multi-drug resistant Pseudomonas aeruginosa, coupled with the pathogen's versatile virulence factors, lead to high morbidity and mortality rates. The current study investigated the potential association between the antibiotic resistance and the production of virulence factors among P. aeruginosa clinical isolates collected from Alexandria Main University Hospital in Egypt. We also evaluated the potential of the phenotypic detection of virulence factors to reflect virulence as detected by virulence genes presence. The role of alginate in the formation of biofilms and the effect of ambroxol, a mucolytic agent, on the inhibition of biofilm formation were investigated. RESULTS A multi-drug resistant phenotype was detected among 79.8% of the isolates. The most predominant virulence factor was biofilm formation (89.4%), while DNase was least detected (10.6%). Pigment production was significantly associated with ceftazidime susceptibility, phospholipase C production was significantly linked to sensitivity to cefepime, and DNase production was significantly associated with intermediate resistance to meropenem. Among the tested virulence genes, lasB and algD showed the highest prevalence rates (93.3% and 91.3%, respectively), while toxA and plcN were the least detected ones (46.2% and 53.8%, respectively). Significant association of toxA with ceftazidime susceptibility, exoS with ceftazidime and aztreonam susceptibility, and plcH with piperacillin-tazobactam susceptibility was observed. There was a significant correlation between alkaline protease production and the detection of algD, lasB, exoS, plcH and plcN; pigment production and the presence of algD, lasB, toxA and exoS; and gelatinase production and the existence of lasB, exoS and plcH. Ambroxol showed a high anti-biofilm activity (5% to 92%). Quantitative reverse transcriptase polymerase chain reaction showed that alginate was not an essential matrix component in P. aeruginosa biofilms. CONCLUSIONS High virulence coupled with the isolates' multi-drug resistance to commonly used antimicrobials would increase morbidity and mortality rates among P. aeruginosa infections. Ambroxol that displayed anti-biofilm action could be suggested as an alternative treatment option, yet in vivo studies are required to confirm these findings. We recommend active surveillance of antimicrobial resistance and virulence determinant prevalence for better understanding of coregulatory mechanisms.
Collapse
Affiliation(s)
- Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Marwa R El Shehawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Elsayed Aboulmagd
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- College of Pharmacy, Arab Academy for Science, Technology and Maritime, Alamein Branch, Alamein, Egypt
| |
Collapse
|
3
|
Bogiel T, Depka D, Rzepka M, Mikucka A. Decoding Genetic Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa Strains Isolated from Bloodstream Infections. Int J Mol Sci 2022; 23:ijms23169208. [PMID: 36012468 PMCID: PMC9409454 DOI: 10.3390/ijms23169208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative rod and an etiological factor of opportunistic infections. The infections of this etiology appear mostly among hospitalized patients and are relatively hard to treat due to widespread antimicrobial resistance. Many virulence factors are involved in the pathogenesis of P. aeruginosa infection, the coexistence of which have a significant impact on the course of an infection with a particular localization. The aim of this study was to assess the antimicrobial susceptibility profiles and the frequency of genes encoding selected virulence factors in clinical P. aeruginosa strains isolated from bloodstream infections (BSIs). The following genes encoding virulence factors of enzymatic activity were assessed: lasB, plC H, plC N, nan1, nan2, aprA and phzM. The frequency of the genes encoding the type III secretion system effector proteins (exoU and exoS) and the genes encoding pilin structural subunits (pilA and pilB) were also investigated. The occurrence of virulence-factor genes was assessed using polymerase chain reactions, each in a separate reaction. Seventy-one P. aeruginosa strains, isolated from blood samples of patients with confirmed bacteremia hospitalized at the University Hospital No. 1 of Dr. Antoni Jurasz in Bydgoszcz, Poland, were included in the study. All the investigated strains were susceptible to colistin, while the majority of the strains presented resistance to ticarcillin/clavulanate (71.8%), piperacillin (60.6 %), imipenem (57.7%) and piperacillin/tazobactam (52.1%). The presence of the lasB and plC H genes was noted in all the tested strains, while the plC N, nan2, aprA, phzM and nan1 genes were identified in 68 (95.8%), 66 (93.0%), 63 (88.7%), 55 (77.5%) and 34 (47.9%) isolates, respectively. In 44 (62.0%) and 41 (57.7%) strains, the presence of the exoU and exoS genes was confirmed, while the pilA and pilB genes were noted only in 14 (19.7%) and 3 (4.2%) isolates, respectively. This may be due to the diverse roles of these proteins in the development and maintenance of BSIs. Statistically significant correlations were observed between particular gene pairs’ coexistence (e.g., alkaline protease and neuraminidase 2). Altogether, twenty-seven distinctive genotypes were observed among the studied strains, indicating the vast variety of genetic compositions of P. aeruginosa strains causing BSIs.
Collapse
|
4
|
Tahmasebi H, Dehbashi S, Nasaj M, Arabestani MR. Molecular epidemiology and collaboration of siderophore-based iron acquisition with surface adhesion in hypervirulent Pseudomonas aeruginosa isolates from wound infections. Sci Rep 2022; 12:7791. [PMID: 35550578 PMCID: PMC9098452 DOI: 10.1038/s41598-022-11984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Iron/siderophore uptake may play an important role in the biofilm formation and secretion of extracellular proteins in Pseudomonas aeruginosa isolates. In the present study, the role of siderophores, heme, and iron regulatory genes in the virulence of Pseudomonas aeruginosa isolates collected from wound infection was investigated. Three hundred eighty-four (384) swab samples were collected from wound infection and identified by phenotypic methods. The quantitative real-time PCR (qRT-PCR) method was evaluated for the gene expressions study. Multi-locus sequence typing (MLST) was used to screen unique sequence types (ST) and clonal complexes (CC). Fifty-five (55) P. aeruginosa isolates were detected in all swab samples. Also, 38 (69.1%) isolates formed biofilm. The prevalence of virulence factor genes was as follows: plcN (67.2%), exoY (70.9%), exoA (60.0%), phzM (58.1%), plcH (50.9%), lasB (36.3%), aprA (69.1%), lasA (34.5%), nanI (74.5%), exoU (70.9%), exoS (60.0%), exoT (63.6%) and algD (65.4%). According to qRT-PCR, genes regulating iron uptake were highly expressed in the toxigenic isolate. The highest expressions levels were observed for hemO, hasR, and pvdA genes in the biofilm-forming isolates. The MLST data confirmed a high prevalence of ST1, ST111, and ST235, with six, five, and 12 clusters, respectively. ST235 and ST1 were the most present among the biofilm-forming and toxigenic strains. Also, the nuoD gene with 54 and guaA with 19 showed the highest and lowest number of unique alleles. We demonstrated that iron/siderophore uptake is sufficient for biofilm formation and an increase in the pathogenesis of P. aeruginosa. These results suggest that the iron/siderophore uptake system may alter the MLST types of P. aeruginosa and predispose to bacterial pathogenesis in wound infections.
Collapse
Affiliation(s)
- Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sanaz Dehbashi
- Department of Laboratory Sciences, Varastegan Institute of Medical Sciences, Mashhad, Iran
| | - Mona Nasaj
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh Junction, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh Junction, Hamadan, Iran. .,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Dehbashi S, Tahmasebi H, Zeyni B, Arabestani MR. Regulation of virulence and β-lactamase gene expression in Staphylococcus aureus isolates: cooperation of two-component systems in bloodstream superbugs. BMC Microbiol 2021; 21:192. [PMID: 34172010 PMCID: PMC8228909 DOI: 10.1186/s12866-021-02257-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA)-bloodstream infections (BSI) are predominantly seen in the hospital or healthcare-associated host. Nevertheless, the interactions of virulence factor (VFs) regulators and β-lactam resistance in MRSA-BSI are unclear. This study aims to characterize the molecular relationship of two-component systems of VFs and the expression of the β-lactamase gene in MRSA-BSI isolates. In this study, 639 samples were collected from BSI and identified by phenotypic methods. We performed extensive molecular characterization, including SCCmec type, agr type, VFs gene profiles determinations, and MLST on isolates. Also, a quantitative real-time PCR (q-RT PCR) assay was developed for identifying the gene expressions. RESULTS Ninety-one (91) S. aureus and 61 MRSA (67.0%) strains were detected in BSI samples. The presence of VFs and SCCmec genes in MRSA isolates were as follows: tst (31.4%), etA (18.0%), etB (8.19%), lukS-PVL (31.4%), lukF-PV (18.0%), lukE-lukD (16.3%), edin (3.2%), hla (16.3%), hlb (18.0%), hld (14.7%), hlg (22.9%), SCCmecI (16.3%), SCCmecII (22.9%), SCCmecIII (36.0%), SCCmecIV (21.3%), and SCCmecV (16.3%). Quantitative real-time PCR showed overexpression of mecRI and mecI in the toxigenic isolates. Moreover, RNAIII and sarA genes were the highest expressions of MRSA strains. The multi-locus sequence typing data confirmed a high prevalence of CC5, CC8, and CC30. However, ST30, ST22, and ST5 were the most prevalent in the resistant and toxigenic strains. CONCLUSION We demonstrated that although regulation of β-lactamase gene expressions is a significant contributor to resistance development, two-component systems also influence antibiotic resistance development in MRSA-BSI isolates. This indicates that resistant strains might have pathogenic potential. We also confirmed that some MLST types are more successful colonizers with a potential for MRSA-BSI.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behrouz Zeyni
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Nutrition health Research center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
A Comprehensive Study of the Relationship between the Production of β-Lactamase Enzymes and Iron/Siderophore Uptake Regulatory Genes in Clinical Isolates of Acinetobacter baumannii. Int J Microbiol 2021; 2021:5565537. [PMID: 33815505 PMCID: PMC7990553 DOI: 10.1155/2021/5565537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022] Open
Abstract
Background The iron/siderophore uptake system (IUS) involved in the Acinetobacter baumannii pathogenicity. However, IUS's role in antibiotic resistance and the production of β-lactamase enzymes of A. baumannii are unclear. This study aimed to investigate the relationship between the production of β-lactamase enzymes and IUS regulatory genes in clinical isolates of A. baumannii. Methods. A. baumannii isolates were collected from clinical isolates using biochemical tests. The antibiotic resistance patterns and β-lactamase-producing strains were identified using the disk diffusion method (DDM). Also, IUS genes were detected by the polymerase chain reaction (PCR) method. Results Seventy-two (72) A. baumannii isolates were collected from a different clinical specimen. Gentamicin-resistant strains (43%) had the highest frequency, and aztreonam-resistant strains (12.5%) had the lowest frequency. Also, the distribution of AmpC and MBL producing isolates were 27.7% and 35%, respectively. Moreover, the frequencies of basD, bauA, pld, paaE, entA, feoB, hemO, and tonB genes were as follows: 12.5%, 15.2%, 11.1%, 15.2%, 19.4%, 16.6%, 23.6%, and 6.9%. Further, a strong correlation was observed between the abundance of β-lactamase-producing strains and IUS genes. Conclusions Based on our knowledge from this study, the association between β-lactamase production and IUS genes in A. baumannii plays an essential role in the emergence of drug-resistant strains.
Collapse
|
7
|
Prevalence of the Genes Associated with Biofilm and Toxins Synthesis amongst the Pseudomonas aeruginosa Clinical Strains. Antibiotics (Basel) 2021; 10:antibiotics10030241. [PMID: 33670887 PMCID: PMC7997207 DOI: 10.3390/antibiotics10030241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most commonly isolated bacteria from clinical specimens, with an increasing isolation frequency in nosocomial outbreaks. The hypothesis tested was whether carbapenem-resistant P. aeruginosa strains display an altered carriage of the virulence factor genes, depending on the type of carbapenem resistance. The aim of the study was to investigate, by PCR, the frequency of 10 chosen virulence factors genes (phzM, phzS, exoT, exoY, exoU, toxA, exoS, algD, pilA and pilB) and the genotype distribution in 107 non-duplicated carbapenem-resistant P. aeruginosa isolates. P. aeruginosa genes involved in phenazine dyes and exoenzyme T synthesis were noted with the highest frequency (100%). Fimbriae-encoding genes were detected with the lowest incidence: 15.9% and 4.7% for pilin A and B, respectively. The differences observed between the exoS gene prevalence amongst the carbapenemase-positive and the carbapenemase-negative strains and the pilA gene prevalence amongst the strains of different origins were statistically significant. Virulence genes’ prevalence and the genotype distribution vary amongst P. aeruginosa strains resistant to carbapenems, especially in terms of their carbapenemase synthesis ability and the strain origin.
Collapse
|
8
|
Carbapenem-Resistant Pseudomonas aeruginosa Strains-Distribution of the Essential Enzymatic Virulence Factors Genes. Antibiotics (Basel) 2020; 10:antibiotics10010008. [PMID: 33374121 PMCID: PMC7823804 DOI: 10.3390/antibiotics10010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most commonly isolated bacteria from clinical specimens, with increasing isolation frequency in nosocomial infections. Herein, we investigated whether antimicrobial-resistant P. aeruginosa strains, e.g., metallo-beta-lactamase (MBL)-producing isolates, may possess a reduced number of virulence genes, resulting from appropriate genome management to adapt to a changing hospital environment. Hospital conditions, such as selective pressure, may lead to the replacement of virulence genes by antimicrobial resistance genes that are crucial to survive under current conditions. The study aimed to compare, using PCR, the frequency of the chosen enzymatic virulence factor genes (alkaline protease-aprA, elastase B-lasB, neuraminidases-nan1 and nan2, and both variants of phospholipase C-plcH and plcN) to MBL distribution among 107 non-duplicated carbapenem-resistant P. aeruginosa isolates. The gene encoding alkaline protease was noted with the highest frequency (100%), while the neuraminidase-1 gene was observed in 37.4% of the examined strains. The difference in lasB and nan1 prevalence amongst the MBL-positive and MBL-negative strains, was statistically significant. Although P. aeruginosa virulence is generally more likely determined by the complex regulation of the virulence gene expression, herein, we found differences in the prevalence of various virulence genes in MBL-producers.
Collapse
|
9
|
Prevalence and molecular typing of Metallo-β-lactamase-producing Pseudomonas aeruginosa with adhesion factors: A descriptive analysis of burn wounds isolates from Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Relationship between Biofilm Regulating Operons and Various Β-Lactamase Enzymes: Analysis of the Clinical Features of Infections caused by Non-Fermentative Gram-Negative Bacilli (Nfgnb) from Iran. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacteria are capable of evolving high doses of the drug in various infections by forming biofilms. Perhaps, biofilm regulator genes have different frequencies in β-lactam producing non-fermentative Gram-negative Bacilli (NFGNB). In this study, we investigated the role of biofilm operons of Pseudomonas aeruginosa and Acinetobacter baumannii on the prevalence of different β-lactamase enzymes. One-hundred twenty (120) nosocomial NFGNB isolates were collected from different clinical samples of patients. PCR method was used for the amplification of resistance genes. Isolates were collected, including 50 isolates (41.66%) of P. aeruginosa and 70 isolates (58.33%) of A. baumannii. The distribution of ESBL, AmpC, KPC, and MBL β-lactamase enzymes in P. aeruginosa and A. baumannii isolates were 64%, 58%, 38%,44%, and 57.14%, 60%, 32.85%, 34.28%, respectively. The frequency of csuABC, pgaABC operon in A. baumannii were as follows: pgaA (45.71%), pgaB (32.85%), pgaC (42.85%), csuA (34.28%), csuB (32.85%), csuC (41.42%), and ompA (38.57%). Further, the prevalence of pslABC and pelABC operons in P. aeruginosa isolates were as follows: pslA (58%), pslB (58%), pslD (60%), pelA (64%), pelB (38%), pelC (44%), and algD (68%). This study revealed that the abundance of biofilm regulator genes in NFGNB strains is affected by different β-lactamase enzymes.
Collapse
|
11
|
Co-harboring of mcr-1 and β-lactamase genes in Pseudomonas aeruginosa by high-resolution melting curve analysis (HRMA): Molecular typing of superbug strains in bloodstream infections (BSI). INFECTION GENETICS AND EVOLUTION 2020; 85:104518. [PMID: 32891877 DOI: 10.1016/j.meegid.2020.104518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022]
Abstract
Background Colistin resistance in P. aeruginosa (CRPA) is due to the appearance of superbug strains. As this pathogen gains more transferrable resistance mechanisms and continues to adapt to acquire additional resistance mechanisms during antimicrobial therapy rapidly, we face the growing threat of CRPA in bloodstream infections (BSI). This study designed to evaluate the frequency of CRPA strains producing different β-lactamases by the High-Resolution Melting Curve Analysis (HRMA) method in BSI and to characterize the different types by multilocus sequence typing (MLST). MATERIAL AND METHODS Sixty-nine (69) P. aeruginosa isolates were collected from blood culture. MIC E-test methods examined the antimicrobial susceptibilities of the bacterial isolates. Detection of resistant strains performed by using HRMA assay. RESULTS The strains resistant to amikacin (n = 11; 15.94%) and colistin (n = 10; 14.49%) were the least abundant and the gentamicin (n = 56; 82.6%) and ciprofloxacin (n = 67; 97.10%) resistant strains were the most frequent. Also, 39 isolates (56.52%) considered as multidrug-resistant (MDR), 20 isolates (28.98%) as extensively drug resistant (XDR), and 11 isolates (15.94%) as Pandrug Resistance (PDR). Further, 32 isolates (46.37%) considered as AmpC producer, and 28 isolates (40.57%) were considered an MBL producer. According to HRMA results, the blaSPM gene was detected in 19 isolates (27.53%), blaNDM gene in 11 isolates (15.94%), blaFOX gene in 31 isolates (44.92%), mcr-1 gene in 10 isolates (14.49%), blaACC and blaVIM genes in 27 isolates (39.13%), and blaTEM gene was reported in 20 isolates (28.98%). Furthermore, P. aeruginosa PASGNDM699, ST3340, and ST235 identified in 1.44%, 11.59% and 17.39% isolates, respectively. CONCLUSION CRPA strains play an essential role in the spread of antibiotic resistance in BSI. Likewise, the HRMA method was sensitive and specific for the detection of superbugs. Moreover, MLST analysis of a diverse collection of P. aeruginosa from blood culture suggests that particular strains or clonal complexes are associated with antibiotic resistance profile.
Collapse
|
12
|
Derakhshan S, Hosseinzadeh A. Resistant Pseudomonas aeruginosa carrying virulence genes in hospitalized patients with urinary tract infection from Sanandaj, west of Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Tahmasebi H, Dehbashi S, Arabestani MR. New approach to identify colistin-resistant Pseudomonas aeruginosa by high-resolution melting curve analysis assay. Lett Appl Microbiol 2020; 70:290-299. [PMID: 31883350 DOI: 10.1111/lam.13270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Colistin-resistant Pseudomonas aeruginosa (CRPA), as a health care system threat, is increasing globally. This study aimed was to determine CRPA by high-resolution melting curve (HRM) analysis method. The HRM method was done on standard strains of P. aeruginosa and CRPA strains. Ninefold serial dilutions of known genomic DNA (gDNA) and plasmid DNA (pDNA) concentrations, extracted from P. aeruginosa NCTC13715 and P. aeruginosa NCTC10728 were prepared and tested by melting curve analysis and HRM assay. Data analysis was performed using the Step-One Plus Software v2.3 and hrm Software v3.0.1. The results of the melt curve analysis and HRM showed a very similar melt peak for all positive controls with a melt temperature that ranged from 88·1°C to 88·6°C for the 16srRNA, 90·0°C to 90·05°C for the mcr-1 and 91·2°C to 91·7°C for the pmrA gene. Furthermore, the data indicated that the HRM approach has the sensitivity to detect 100 CFU per ml for the 16srRNA gene, 101 CFU per ml for the pmrA gene, and 103 CFU per ml for the mcr-1 gene. According to our findings, it was concluded that the HRM method could detect 100 to 103 CFU per ml of P. aeruginosa gDNA and pDNA. Therefore, CRPA strains can be identified with high sensitivity and specificity by HRM assay. SIGNIFICANCE AND IMPACT OF THE STUDY: The highlight of our research is about the detection of bacteria resistance genes to antibiotics by advanced molecular methods, which means high-resolution melting curve (HRM) analysis. We determined that the HRM method in identifying colistin-resistant P. aeruginosa has high accuracy and speed, and with high sensitivity and specificity.
Collapse
Affiliation(s)
- H Tahmasebi
- Microbiology Department, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - S Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M R Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|