1
|
Li J, Yin S, Wei Z, Xiao Z, Kang Z, Wu Y, Huang Y, Jia Q, Peng Y, Ru Z, Sun X, Yang Y, Yang Q, Wang J, Liu C, Yang M, Wang Y, Yang X. Newly identified peptide Nigrocin-OA27 inhibits UVB induced melanin production via the MITF/TYR pathway. Peptides 2024; 177:171215. [PMID: 38608837 DOI: 10.1016/j.peptides.2024.171215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Melasma is a common skin disease induced by an increase in the content of melanin in the skin, which also causes serious physical and mental harm to patients. In this research, a novel peptide (Nigrocin-OA27) from Odorrana andersonii is shown to exert a whitening effect on C57 mice pigmentation model. The peptide also demonstrated non-toxic and antioxidant capacity, and can significantly reduce melanin content in B16 cells. Topical application effectively delivered Nigrocin-OA27 to skin's epidermal and dermal layers and exhibited significant preventive and whitening effects on the UVB-induced ear pigmentation model in C57 mice. The whitening mechanism of Nigrocin-OA27 may be related to reduced levels of the microphthalmia-associated transcription factor and the key enzyme for melanogenesis-tyrosinase (TYR). Nigrocin-OA27 also inhibited the catalytic activity by adhering to the active core of TYR, thereby reducing melanin formation and deposition. In conclusion, Nigrocin-OA27 may be a potentially effective external agent to treat melasma by inhibiting aberrant skin melanin synthesis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yubing Huang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiaohan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuliu Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qian Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junyuan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Chengxing Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
2
|
DU C, Yuan F, Duan X, Rong M, Meng E, Liu C. Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:194-200. [PMID: 38268403 PMCID: PMC11057981 DOI: 10.3724/zdxbyxb-2023-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVES To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom, and to determine its sequence and structure. METHODS Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom, and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording. The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry; its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry; its structure was established based on iterative thread assembly refinement online analysis. RESULTS A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8, and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSGDSRLKD-OH. Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell, with 1.0 μmol/L SsTx-P2 suppressing 95% current of Kv4.1 channel. Its structure showed that SsTx-P2 shared a conserved helical structure. CONCLUSIONS The study has isolated a novel peptide SsTx-P2 from centipede venom, which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
Collapse
Affiliation(s)
- Canwei DU
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China.
| | - Fuchu Yuan
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Xinyi Duan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Mingqiang Rong
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Er Meng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China.
| |
Collapse
|
3
|
Chen J, Zhang X, Lin C, Gao B. Synthesis and insecticidal activity of cysteine-free conopeptides from Conus betulinus. Toxicon 2023; 233:107253. [PMID: 37586612 DOI: 10.1016/j.toxicon.2023.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/21/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
The cone snail Conus betulinus is a vermivorous species that is widely distributed in the South China Sea. Its crude venom contains various peptides used to prey on marine worms. In previous studies, a systematic analysis of the peptide toxin sequences from C. betulinus was carried out using a multiomics technique. In this study, 10 cysteine-free peptides that may possess insecticidal activity were selected from a previously constructed conopeptide library of C. betulinus using the CPY-Fe conopeptide as a template. These conopeptides were prepared by solid-phase peptide synthesis (SPPS), then characterized by the reverse-phase high performance liquid chromatography (HPLC) and mass spectrometry. Insect cytotoxicity and injection experiments revealed that these cysteine-free peptides exerted favorable insecticidal effects, and two of them (Bt010 and Bt016) exhibited high insecticidal efficacy with LD50 of 9.07 nM and 10.93 nM, respectively. In addition, the 3D structures of these peptides were predicted by homology modeling, and a phylogenetic tree was constructed based on the nucleotide data of conopeptides to analyze the relationships among structures, functions, and evolution. A preliminary mechanism for the insecticidal activity of the cysteine-free conopeptides was predicted by molecular docking. To the best of our knowledge, this is the first study to report the insecticidal activity of cysteine-free conopeptides derived from Conus betulinus, signaling that they could potentially be developed into bioinsecticides with desirable properties such as easy preparation, low cost, and high potency.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xueying Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Chengzhang Lin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China.
| |
Collapse
|
4
|
Suh SM, Kim E, Kim MJ, Yang SM, Kim HY. Development of real-time PCR method for rapid and accurate detection of Centipedes ( Scolopendra mutilans) in food. Food Sci Biotechnol 2023; 32:979-985. [PMID: 37123063 PMCID: PMC10130274 DOI: 10.1007/s10068-022-01231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
Centipedes contain pharmacologically active compounds used as important medicinal material. However, the poisons produced by centipedes can cause human diseases; therefore, its use as a food ingredient is prohibited. This is the first report to develop a real-time PCR method for detection of centipedes. The primer and probe targeting the mitochondrial cytochrome c oxidase subunit 1 (COI) gene were newly designed. The specificity was verified using ten species and was confirmed to amplify only the centipede species. The real-time PCR method exhibited good linearity with a high-determination coefficient (R 2 = 0.999) and a detection limit was 0.001 ng. The performance of our method was also verified using five real-time PCR platforms under Universal and Fast PCR conditions. Finally, its applicability to processed food was evaluated using binary insect mixtures, and at least 0.1% of centipedes was detected. Therefore, our method can specifically and sensitively detect centipedes in food, contributing to food safety.
Collapse
Affiliation(s)
- Seung-Man Suh
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
| | - Mi-Ju Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
5
|
De Lucca Caetano LH, Nishiyama-Jr MY, de Carvalho Lins Fernandes Távora B, de Oliveira UC, de Loiola Meirelles Junqueira-de-Azevedo I, Faquim-Mauro EL, Magalhães GS. Recombinant Production and Characterization of a New Toxin from Cryptops iheringi Centipede Venom Revealed by Proteome and Transcriptome Analysis. Toxins (Basel) 2021; 13:858. [PMID: 34941696 PMCID: PMC8704451 DOI: 10.3390/toxins13120858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Among the Chilopoda class of centipede, the Cryptops genus is one of the most associated with envenomation in humans in the metropolitan region of the state of São Paulo. To date, there is no study in the literature about the toxins present in its venom. Thus, in this work, a transcriptomic characterization of the Cryptops iheringi venom gland, as well as a proteomic analysis of its venom, were performed to obtain a toxin profile of this species. These methods indicated that 57.9% of the sequences showed to be putative toxins unknown in public databases; among them, we pointed out a novel putative toxin named Cryptoxin-1. The recombinant form of this new toxin was able to promote edema in mice footpads with massive neutrophils infiltration, linking this toxin to envenomation symptoms observed in accidents with humans. Our findings may elucidate the role of this toxin in the venom, as well as the possibility to explore other proteins found in this work.
Collapse
Affiliation(s)
- Lhiri Hanna De Lucca Caetano
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| | - Milton Yutaka Nishiyama-Jr
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (M.Y.N.-J.); (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Ursula Castro de Oliveira
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (M.Y.N.-J.); (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Eliana L. Faquim-Mauro
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| | - Geraldo Santana Magalhães
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| |
Collapse
|