1
|
Mao YX, Li Y, Yang Z, Xu N, Zhang S, Wang X, Yang X, Sun Q, Mao Y. Comparative transcriptome analysis between rhesus macaques ( Macaca mulatta) and crab-eating macaques ( M. fascicularis). Zool Res 2024; 45:299-310. [PMID: 38485500 PMCID: PMC11017088 DOI: 10.24272/j.issn.2095-8137.2023.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques ( Macaca mulatta, MMU) and crab-eating macaques ( M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from 84 samples (41 MFA samples and 43 MMU samples) encompassing 14 common tissues. Our findings revealed a small fraction of genes (3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover, 19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary, this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.
Collapse
Affiliation(s)
- Yu-Xiang Mao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yamei Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zikun Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang 322000, China. E-mail:
| |
Collapse
|
2
|
Wang J, Liu X, Lan Y, Que T, Li J, Yue B, Fan Z. DNA methylation and transcriptome analysis reveal epigenomic differences among three macaque species. Evol Appl 2024; 17:e13604. [PMID: 38343783 PMCID: PMC10853583 DOI: 10.1111/eva.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2024] Open
Abstract
Macaques (genus Macaca) are the most widely distributed non-human primates, and their evolutionary history, gene expression profiles, and genetic differences have been extensively studied. However, the DNA methylomes of macaque species are not available in public databases, which hampers understanding of epigenetic differences among macaque species. Epigenetic modifications can potentially affect development, physiology, behavior, and evolution. Here, we investigated the methylation patterns of the Tibetan macaque (M. thibetana; TM), Chinese rhesus macaque (M. mulatta lasiota; CR), and crab-eating macaque (M. fascicularis; CE) through whole-genome bisulfite sequencing from peripheral blood. We compared genome-wide methylation site information for the three species. We identified 12,128 (CR vs. CE), 59,165 (CR vs. TM), and 39,751 (CE vs. TM) differentially methylated regions (DMRs) in the three macaques. Furthermore, we obtained the differentially expressed genes (DEGs) among the three macaque species. The differences between CR and CE were smaller at both the methylome and transcriptome levels than compared with TM (CR vs. TM and CE vs. TM). We also found a change in the density of single nucleotide mutations in DMRs relative to their flanking regions, indicating a potential mechanism through which genomic alterations may modulate methylation landscapes, thereby influencing the transcriptome. Functional enrichment analyses showed the DMR-related genes were enriched in developmental processes and neurological functions, such as the growth hormone-related pathway, insulin secretion pathway, thyroid hormone synthesis pathway, morphine addiction, and GABAergic synapses. These differences may be associated with variations in physiology and habitat among the macaques. Our study provides one of the first genome-wide comparisons of genetic, gene expression, and epigenetic variations across different macaques. Our results should facilitate further research on comparative genomic and genetic differences in macaque species.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Xuyuan Liu
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Tengcheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of GuangxiGuangxiNanningChina
- Faculty of Data ScienceCity University of MacauMacauTaipaChina
| | - Jing Li
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| |
Collapse
|
3
|
Liu X, Liu X, Wang X, Shang K, Li J, Lan Y, Wang J, Li J, Yue B, He M, Fan Z. Multi-omics analysis reveals changes in tryptophan and cholesterol metabolism before and after sexual maturation in captive macaques. BMC Genomics 2023; 24:308. [PMID: 37286946 DOI: 10.1186/s12864-023-09404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Rhesus macaques (Macaca mulatta, RMs) are widely used in sexual maturation studies due to their high genetic and physiological similarity to humans. However, judging sexual maturity in captive RMs based on blood physiological indicators, female menstruation, and male ejaculation behavior can be inaccurate. Here, we explored changes in RMs before and after sexual maturation based on multi-omics analysis and identified markers for determining sexual maturity. We found that differentially expressed microbiota, metabolites, and genes before and after sexual maturation showed many potential correlations. Specifically, genes involved in spermatogenesis (TSSK2, HSP90AA1, SOX5, SPAG16, and SPATC1) were up-regulated in male macaques, and significant changes in gene (CD36), metabolites (cholesterol, 7-ketolithocholic acid, and 12-ketolithocholic acid), and microbiota (Lactobacillus) related to cholesterol metabolism were also found, suggesting the sexually mature males have stronger sperm fertility and cholesterol metabolism compared to sexually immature males. In female macaques, most differences before and after sexual maturity were related to tryptophan metabolism, including changes in IDO1, IDO2, IFNGR2, IL1Β, IL10, L-tryptophan, kynurenic acid (KA), indole-3-acetic acid (IAA), indoleacetaldehyde, and Bifidobacteria, indicating that sexually mature females exhibit stronger neuromodulation and intestinal immunity than sexually immature females. Cholesterol metabolism-related changes (CD36, 7-ketolithocholic acid, 12-ketolithocholic acid) were also observed in female and male macaques. Exploring differences before and after sexual maturation through multi-omics, we identified potential biomarkers of sexual maturity in RMs, including Lactobacillus (for males) and Bifidobacterium (for females) valuable for RM breeding and sexual maturation research.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xuyuan Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xinqi Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ke Shang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiawei Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiao Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Xu J, Lan Y, Wang X, Shang K, Liu X, Wang J, Li J, Yue B, Shao M, Fan Z. Multi-omics analysis reveals the host-microbe interactions in aged rhesus macaques. Front Microbiol 2022; 13:993879. [PMID: 36238598 PMCID: PMC9551614 DOI: 10.3389/fmicb.2022.993879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is a complex multifactorial process that greatly affects animal health. Multi-omics analysis is widely applied in evolutionary biology and biomedical research. However, whether multi-omics can provide sufficient information to reveal comprehensive changes in aged non-human primates remains unclear. Here, we explored changes in host-microbe interactions with aging in Chinese rhesus macaques (Macaca mulatta lasiota, CRs) using multi-omics analysis. Results showed marked changes in the oral and gut microbiomes between young and aged CRs, including significantly reduced probiotic abundance and increased pathogenic bacterial abundance in aged CRs. Notably, the abundance of Lactobacillus, which can metabolize tryptophan to produce aryl hydrocarbon receptor (AhR) ligands, was decreased in aged CRs. Consistently, metabolomics detected a decrease in the plasma levels of AhR ligands. In addition, free fatty acid, acyl carnitine, heparin, 2-(4-hydroxyphenyl) propionic acid, and docosahexaenoic acid ethyl ester levels were increased in aged CRs, which may contribute to abnormal fatty acid metabolism and cardiovascular disease. Transcriptome analysis identified changes in the expression of genes associated with tryptophan metabolism and inflammation. In conclusion, many potential links among different omics were found, suggesting that aged CRs face multiple metabolic problems, immunological disorders, and oral and gut diseases. We determined that tryptophan metabolism is critical for the physiological health of aged CRs. Our findings demonstrate the value of multi-omics analyses in revealing host-microbe interactions in non-human primates and suggest that similar approaches could be applied in evolutionary and ecological research of other species.
Collapse
Affiliation(s)
- Jue Xu
- West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinqi Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ke Shang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Schmidt AF, Schnell DJ, Eaton KP, Chetal K, Kannan PS, Miller LA, Chougnet CA, Swarr DT, Jobe AH, Salomonis N, Kamath-Rayne BD. Fetal maturation revealed by amniotic fluid cell-free transcriptome in rhesus macaques. JCI Insight 2022; 7:162101. [PMID: 35980752 PMCID: PMC9675452 DOI: 10.1172/jci.insight.162101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
Accurate estimate of fetal maturity could provide individualized guidance for delivery of complicated pregnancies. However, current methods are invasive, have low accuracy, and are limited to fetal lung maturation. To identify diagnostic gestational biomarkers, we performed transcriptomic profiling of lung and brain, as well as cell-free RNA from amniotic fluid of preterm and term rhesus macaque fetuses. These data identify potentially new and prior-associated gestational age differences in distinct lung and neuronal cell populations when compared with existing single-cell and bulk RNA-Seq data. Comparative analyses found hundreds of genes coincidently induced in lung and amniotic fluid, along with dozens in brain and amniotic fluid. These data enable creation of computational models that accurately predict lung compliance from amniotic fluid and lung transcriptome of preterm fetuses treated with antenatal corticosteroids. Importantly, antenatal steroids induced off-target gene expression changes in the brain, impinging upon synaptic transmission and neuronal and glial maturation, as this could have long-term consequences on brain development. Cell-free RNA in amniotic fluid may provide a substrate of global fetal maturation markers for personalized management of at-risk pregnancies.
Collapse
Affiliation(s)
- Augusto F. Schmidt
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel J. Schnell
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth P. Eaton
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paranthaman S. Kannan
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa A. Miller
- California National Primate Research Center, UCD, Davis, California, USA
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Daniel T. Swarr
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Alan H. Jobe
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Bioinformatics, University of Cincinnati School of Medicine, Cincinnati Ohio, USA
| | - Beena D. Kamath-Rayne
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Global Child Health and Life Support, American Academy of Pediatrics, Itasca, Illinois, USA
| |
Collapse
|
6
|
Wang J, Lv M, He L, Wang X, Lan Y, Chen J, Chen M, Zhang C, Tang R, Zhou D, Deng X, Li J, Guo T, Price M, Yue B, Fan Z. Transcriptomic landscape of persistent diarrhoea in rhesus macaques and comparison with humans and mouse models with inflammatory bowel disease. Gene 2021; 800:145837. [PMID: 34274469 DOI: 10.1016/j.gene.2021.145837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
Diarrhoea is a widespread disease in captive rhesus macaques (Macaca mulatta) and a small proportion of individuals may experience persistent diarrhoea. Persistent diarrhoea can lead to a compromised immune system, intestinal inflammation and malnutrition. We analyzed the blood transcriptomes of 10 persistent diarrhoeal and 12 healthy rhesus macaques to investigate the gene expression differences between the two groups. We identified 330 DEGs between persistent diarrhoeal and healthy rhesus macaques. The 211 up-regulated DEGs in the diarrhoeal group were mainly enriched in immune-related and interleukin-related categories. Among them, three interleukin (IL) 18 related DEGs (IL18, IL18R1, and IL18BP) played important roles in actively regulating pro-inflammatory responses. Interestingly, the up- and down-regulated DEGs were both enriched in the same immune-related categories. Thus, we applied a new method to examine the distribution of DEGs in all child categories. We found that interleukin and T cell related categories were mainly occupied by up-regulated DEGs, while immunoglobulin production and B cell related categories were enriched by down-regulated DEGs. We also compared rhesus macaque DEGs with the DEGs of inflammatory bowel disease (IBD) humans and IBD mouse models and found that 30-40% of macaque DEGs were shared with IBD humans and mouse models. In conclusion, our results showed that there were significant immune differences between persistent diarrhoeal rhesus macaques and healthy macaques, which was similar to the expression differences in IBD patients and mouse models.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mingyi Lv
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lewei He
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xinqi Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jieyun Chen
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Minghui Chen
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Chunhui Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ruixiang Tang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dan Zhou
- The First People's Hospital of Neijiang, Neijiang 641000, Sichuan, China
| | - Xiaoyang Deng
- Lasa Sunshine Maternity Hospital, Lasa 850000, Xizang, China
| | - Jing Li
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
7
|
Yin D, Lin D, Guo H, Gu H, Ying C, Zhang Y, Zhang J, Liu K, Tang W. Integrated analysis of blood mRNAs and microRNAs reveals immune changes with age in the Yangtze finless porpoise (Neophocaena asiaeorientalis). Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110635. [PMID: 34119650 DOI: 10.1016/j.cbpb.2021.110635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Populations of Yangtze finless porpoises (YFPs) have rapidly declined in recent decades, raising the specter of extinction. In order to protect YFPs, a greater understanding of their biology is needed, including studying how their immune functioning changes with age. Here, we systematically studied the hematologic and biochemical parameters, as well as mRNAs and miRNAs profiles of old, adult, and young YFPs. The lymphocyte (LYMPH), neutrophils (NEUT) and eosinophils (EOS) counts in old YFPs were lower than those in young or adult YFPs. When comparing old to adult YFPs, the latter showed higher expression of genes associated with the innate and adaptive immune systems, including complement components, major histocompatibility complex, interleukins, TNF receptors, and chemokines/cytokines. When comparing old to young YFPs, the most striking difference was in higher toll-like receptor signaling in the latter. When comparing adult to young YFPs, the former exhibited higher expression of genes related to adaptive immunity and the FoxO signaling pathway, but lower expression of genes associated with the PI3K-Akt signaling pathway. Negative miRNA-mRNA interactions were predicted in comparisons of the old and adult (326), old and young (316), adult and young (211) groups. Overall, these results delineate a progression from early innate immune function dominance to adaptive immune function enhancement (young to adult) and deterioration (adult to old), and the changes in miRNAs profile correlate with the effects of age on immune functions. This study is the first to observe the changes of immune function of Yangtze finless porpoise with age using transcriptome method, and the study's findings are of great significance for protecting this endangered species.
Collapse
Affiliation(s)
- Denghua Yin
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China
| | - Danqing Lin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China
| | - Hongyi Guo
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Hailong Gu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Congping Ying
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China
| | - Ya Zhang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
| | - Jialu Zhang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China
| | - Kai Liu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, WuXi 214081, China.
| | - Wenqiao Tang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
8
|
Wang J, Lan Y, He L, Tang R, Li Y, Huang Y, Liang S, Gao Z, Price M, Yue B, He M, Guo T, Fan Z. Sex-specific gene expression in the blood of four primates. Genomics 2021; 113:2605-2613. [PMID: 34116169 DOI: 10.1016/j.ygeno.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Blood is an important non-reproductive tissue, but little is known about the sex-specific gene expressions in the blood. Therefore, we investigated sex-specific gene expression differences in the blood tissues of four primates, rhesus macaques (Macaca mulatta), Tibetan macaques (M. thibetana), yellow baboons (Papio cynocephalus), and humans. We identified seven sex-specific differentially expressed genes (SDEGs) in each non-human primate and 31 SDEGs in humans. The four primates had only one common SDEG, MAP7D2. In humans, immune-related SDEGs were identified as up-regulated, but also down-regulated in females. We also found that most of the X-Y gene pairs had similar expression levels between species, except pair EIF1AY/EIF1AX. The expression level of X-Y gene pairs of rhesus and Tibetan macaques showed no significant differential expression levels, while humans had six significant XY-biased and three XX-biased X-Y gene pairs. Our observed sex differences in blood should increase understanding of sex differences in primate blood tissue.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yue Lan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lewei He
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ruixiang Tang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuhui Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Yuan Huang
- Medical Laboratory Department of West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Shan Liang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Zhan Gao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China.
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
9
|
Yan CC, Zhang XS, Zhou L, Yang Q, Zhou M, Zhang LW, Xing JC, Yan ZF, Price M, Li J, Yue BS, Fan ZX. Effects of aging on gene expression in blood of captive Tibetan macaques ( Macaca thibetana) and comparisons with expression in humans. Zool Res 2021; 41:557-563. [PMID: 32746507 PMCID: PMC7475009 DOI: 10.24272/j.issn.2095-8137.2020.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression occur as animals, including primates, age. Macaques have long been used as a model species for primate evolution and biomedical studies. Here, to study gene expression in Tibetan macaques (Macaca thibetana, TMs) and its differences to humans, we applied RNA-Seq to obtain the blood transcriptomes of 24 TMs. In total, 2 523 age-associated differentially expressed genes (DEGs) were identified. Several pathways and processes that regulate aging, including the FoxO signaling pathway, autophagy, and platelet activation, were significantly enriched in the up-regulated DEGs. Two significantly age-related modules were identified by weighted gene co-expression network analysis (WGCNA). The TMs and humans shared 279 common DEGs, including 111 up-regulated and 141 down-regulated genes with advancing age in the same expression direction. However, 27 age-related DEGs presented the opposite expression direction in TMs as that in humans. For example, INPPL1, with inhibitory effects on the B cell receptor signaling pathway, was up-regulated in humans but down-regulated in TMs. In general, our study suggests that aging is a critical factor affecting gene expression in the captive TM population. The similarities and differences in gene expression patterns between TMs and humans could provide new insights into primate evolution and benefit TM model development.
Collapse
Affiliation(s)
- Chao-Chao Yan
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin-Shang Zhang
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Qiao Yang
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Min Zhou
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lin-Wan Zhang
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jin-Chuan Xing
- Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Zhi-Feng Yan
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Li
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bi-Song Yue
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhen-Xin Fan
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China. E-mail:
| |
Collapse
|
10
|
Zhou M, Zhang L, Yang Q, Yan C, Jiang P, Lan Y, Wang J, Tang R, He M, Lei G, Sun P, Su N, Price M, Li J, Lin F, Yue B, Fan Z. Age-related gene expression and DNA methylation changes in rhesus macaque. Genomics 2020; 112:5147-5156. [DOI: 10.1016/j.ygeno.2020.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
|